\left\{ \begin{array} { l } { x + 5 y = 10 } \\ { 5 ( x + y ) - 2 x = 20 } \end{array} \right.
Solve for x, y
x=5
y=1
Graph
Share
Copied to clipboard
5x+5y-2x=20
Consider the second equation. Use the distributive property to multiply 5 by x+y.
3x+5y=20
Combine 5x and -2x to get 3x.
x+5y=10,3x+5y=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+5y=10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-5y+10
Subtract 5y from both sides of the equation.
3\left(-5y+10\right)+5y=20
Substitute -5y+10 for x in the other equation, 3x+5y=20.
-15y+30+5y=20
Multiply 3 times -5y+10.
-10y+30=20
Add -15y to 5y.
-10y=-10
Subtract 30 from both sides of the equation.
y=1
Divide both sides by -10.
x=-5+10
Substitute 1 for y in x=-5y+10. Because the resulting equation contains only one variable, you can solve for x directly.
x=5
Add 10 to -5.
x=5,y=1
The system is now solved.
5x+5y-2x=20
Consider the second equation. Use the distributive property to multiply 5 by x+y.
3x+5y=20
Combine 5x and -2x to get 3x.
x+5y=10,3x+5y=20
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&5\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&5\\3&5\end{matrix}\right))\left(\begin{matrix}1&5\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&5\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&5\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&5\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&5\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-5\times 3}&-\frac{5}{5-5\times 3}\\-\frac{3}{5-5\times 3}&\frac{1}{5-5\times 3}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 10+\frac{1}{2}\times 20\\\frac{3}{10}\times 10-\frac{1}{10}\times 20\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
Do the arithmetic.
x=5,y=1
Extract the matrix elements x and y.
5x+5y-2x=20
Consider the second equation. Use the distributive property to multiply 5 by x+y.
3x+5y=20
Combine 5x and -2x to get 3x.
x+5y=10,3x+5y=20
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-3x+5y-5y=10-20
Subtract 3x+5y=20 from x+5y=10 by subtracting like terms on each side of the equal sign.
x-3x=10-20
Add 5y to -5y. Terms 5y and -5y cancel out, leaving an equation with only one variable that can be solved.
-2x=10-20
Add x to -3x.
-2x=-10
Add 10 to -20.
x=5
Divide both sides by -2.
3\times 5+5y=20
Substitute 5 for x in 3x+5y=20. Because the resulting equation contains only one variable, you can solve for y directly.
15+5y=20
Multiply 3 times 5.
5y=5
Subtract 15 from both sides of the equation.
y=1
Divide both sides by 5.
x=5,y=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}