\left\{ \begin{array} { l } { x + 4.5 y + z + w = 48 } \\ { x = 27.75 * 0.60 } \\ { z = 6 } \\ { w = 7 + 1.50 * 0.60 } \end{array} \right.
Solve for x, y, z, w
x=16.65
y = \frac{349}{90} = 3\frac{79}{90} \approx 3.877777778
z=6
w=7.9
Share
Copied to clipboard
x=16.65
Consider the second equation. Multiply 27.75 and 0.6 to get 16.65.
w=7+0.9
Consider the fourth equation. Multiply 1.5 and 0.6 to get 0.9.
w=7.9
Add 7 and 0.9 to get 7.9.
16.65+4.5y+6+7.9=48
Consider the first equation. Insert the known values of variables into the equation.
22.65+4.5y+7.9=48
Add 16.65 and 6 to get 22.65.
30.55+4.5y=48
Add 22.65 and 7.9 to get 30.55.
4.5y=48-30.55
Subtract 30.55 from both sides.
4.5y=17.45
Subtract 30.55 from 48 to get 17.45.
y=\frac{17.45}{4.5}
Divide both sides by 4.5.
y=\frac{1745}{450}
Expand \frac{17.45}{4.5} by multiplying both numerator and the denominator by 100.
y=\frac{349}{90}
Reduce the fraction \frac{1745}{450} to lowest terms by extracting and canceling out 5.
x=16.65 y=\frac{349}{90} z=6 w=7.9
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}