Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+4y=-16,3x-2\left(y-2\right)=-2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+4y=-16
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-4y-16
Subtract 4y from both sides of the equation.
3\left(-4y-16\right)-2\left(y-2\right)=-2
Substitute -4y-16 for x in the other equation, 3x-2\left(y-2\right)=-2.
-12y-48-2\left(y-2\right)=-2
Multiply 3 times -4y-16.
-12y-48-2y+4=-2
Multiply -2 times y-2.
-14y-48+4=-2
Add -12y to -2y.
-14y-44=-2
Add -48 to 4.
-14y=42
Add 44 to both sides of the equation.
y=-3
Divide both sides by -14.
x=-4\left(-3\right)-16
Substitute -3 for y in x=-4y-16. Because the resulting equation contains only one variable, you can solve for x directly.
x=12-16
Multiply -4 times -3.
x=-4
Add -16 to 12.
x=-4,y=-3
The system is now solved.
x+4y=-16,3x-2\left(y-2\right)=-2
Put the equations in standard form and then use matrices to solve the system of equations.
3x-2\left(y-2\right)=-2
Simplify the second equation to put it in standard form.
3x-2y+4=-2
Multiply -2 times y-2.
3x-2y=-6
Subtract 4 from both sides of the equation.
\left(\begin{matrix}1&4\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-6\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}1&4\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-16\\-6\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&4\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-16\\-6\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-16\\-6\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-4\times 3}&-\frac{4}{-2-4\times 3}\\-\frac{3}{-2-4\times 3}&\frac{1}{-2-4\times 3}\end{matrix}\right)\left(\begin{matrix}-16\\-6\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-16\\-6\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-16\right)+\frac{2}{7}\left(-6\right)\\\frac{3}{14}\left(-16\right)-\frac{1}{14}\left(-6\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-3\end{matrix}\right)
Do the arithmetic.
x=-4,y=-3
Extract the matrix elements x and y.