\left\{ \begin{array} { l } { x + 4 y = - 16 } \\ { 3 x - 2 ( y - 2 ) = - 2 } \end{array} \right.
Solve for x, y
x=-4
y=-3
Graph
Share
Copied to clipboard
x+4y=-16,3x-2\left(y-2\right)=-2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+4y=-16
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-4y-16
Subtract 4y from both sides of the equation.
3\left(-4y-16\right)-2\left(y-2\right)=-2
Substitute -4y-16 for x in the other equation, 3x-2\left(y-2\right)=-2.
-12y-48-2\left(y-2\right)=-2
Multiply 3 times -4y-16.
-12y-48-2y+4=-2
Multiply -2 times y-2.
-14y-48+4=-2
Add -12y to -2y.
-14y-44=-2
Add -48 to 4.
-14y=42
Add 44 to both sides of the equation.
y=-3
Divide both sides by -14.
x=-4\left(-3\right)-16
Substitute -3 for y in x=-4y-16. Because the resulting equation contains only one variable, you can solve for x directly.
x=12-16
Multiply -4 times -3.
x=-4
Add -16 to 12.
x=-4,y=-3
The system is now solved.
x+4y=-16,3x-2\left(y-2\right)=-2
Put the equations in standard form and then use matrices to solve the system of equations.
3x-2\left(y-2\right)=-2
Simplify the second equation to put it in standard form.
3x-2y+4=-2
Multiply -2 times y-2.
3x-2y=-6
Subtract 4 from both sides of the equation.
\left(\begin{matrix}1&4\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-6\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}1&4\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-16\\-6\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&4\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-16\\-6\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-16\\-6\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-4\times 3}&-\frac{4}{-2-4\times 3}\\-\frac{3}{-2-4\times 3}&\frac{1}{-2-4\times 3}\end{matrix}\right)\left(\begin{matrix}-16\\-6\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-16\\-6\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-16\right)+\frac{2}{7}\left(-6\right)\\\frac{3}{14}\left(-16\right)-\frac{1}{14}\left(-6\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-3\end{matrix}\right)
Do the arithmetic.
x=-4,y=-3
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}