\left\{ \begin{array} { l } { x + 4 = 2 } \\ { y + 12 = 74 } \\ { x + y - z = 1 } \end{array} \right.
Solve for x, y, z
x=-2
y=62
z=59
Share
Copied to clipboard
x=2-4
Consider the first equation. Subtract 4 from both sides.
x=-2
Subtract 4 from 2 to get -2.
y=74-12
Consider the second equation. Subtract 12 from both sides.
y=62
Subtract 12 from 74 to get 62.
-2+62-z=1
Consider the third equation. Insert the known values of variables into the equation.
60-z=1
Add -2 and 62 to get 60.
-z=1-60
Subtract 60 from both sides.
-z=-59
Subtract 60 from 1 to get -59.
z=\frac{-59}{-1}
Divide both sides by -1.
z=59
Fraction \frac{-59}{-1} can be simplified to 59 by removing the negative sign from both the numerator and the denominator.
x=-2 y=62 z=59
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}