\left\{ \begin{array} { l } { x + 3 y = 153 } \\ { 8 x - 6 y = 256 } \end{array} \right.
Solve for x, y
x = \frac{281}{5} = 56\frac{1}{5} = 56.2
y = \frac{484}{15} = 32\frac{4}{15} \approx 32.266666667
Graph
Share
Copied to clipboard
x+3y=153,8x-6y=256
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=153
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-3y+153
Subtract 3y from both sides of the equation.
8\left(-3y+153\right)-6y=256
Substitute -3y+153 for x in the other equation, 8x-6y=256.
-24y+1224-6y=256
Multiply 8 times -3y+153.
-30y+1224=256
Add -24y to -6y.
-30y=-968
Subtract 1224 from both sides of the equation.
y=\frac{484}{15}
Divide both sides by -30.
x=-3\times \frac{484}{15}+153
Substitute \frac{484}{15} for y in x=-3y+153. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{484}{5}+153
Multiply -3 times \frac{484}{15}.
x=\frac{281}{5}
Add 153 to -\frac{484}{5}.
x=\frac{281}{5},y=\frac{484}{15}
The system is now solved.
x+3y=153,8x-6y=256
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&3\\8&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}153\\256\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&3\\8&-6\end{matrix}\right))\left(\begin{matrix}1&3\\8&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\8&-6\end{matrix}\right))\left(\begin{matrix}153\\256\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&3\\8&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\8&-6\end{matrix}\right))\left(\begin{matrix}153\\256\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\8&-6\end{matrix}\right))\left(\begin{matrix}153\\256\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-3\times 8}&-\frac{3}{-6-3\times 8}\\-\frac{8}{-6-3\times 8}&\frac{1}{-6-3\times 8}\end{matrix}\right)\left(\begin{matrix}153\\256\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{10}\\\frac{4}{15}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}153\\256\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 153+\frac{1}{10}\times 256\\\frac{4}{15}\times 153-\frac{1}{30}\times 256\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{281}{5}\\\frac{484}{15}\end{matrix}\right)
Do the arithmetic.
x=\frac{281}{5},y=\frac{484}{15}
Extract the matrix elements x and y.
x+3y=153,8x-6y=256
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8x+8\times 3y=8\times 153,8x-6y=256
To make x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 1.
8x+24y=1224,8x-6y=256
Simplify.
8x-8x+24y+6y=1224-256
Subtract 8x-6y=256 from 8x+24y=1224 by subtracting like terms on each side of the equal sign.
24y+6y=1224-256
Add 8x to -8x. Terms 8x and -8x cancel out, leaving an equation with only one variable that can be solved.
30y=1224-256
Add 24y to 6y.
30y=968
Add 1224 to -256.
y=\frac{484}{15}
Divide both sides by 30.
8x-6\times \frac{484}{15}=256
Substitute \frac{484}{15} for y in 8x-6y=256. Because the resulting equation contains only one variable, you can solve for x directly.
8x-\frac{968}{5}=256
Multiply -6 times \frac{484}{15}.
8x=\frac{2248}{5}
Add \frac{968}{5} to both sides of the equation.
x=\frac{281}{5}
Divide both sides by 8.
x=\frac{281}{5},y=\frac{484}{15}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}