\left\{ \begin{array} { l } { x + 3 y + z + w = 48 } \\ { x = 27.75 * 0.60 } \\ { z = 3.10 } \\ { w = 8 + 0.50 * 0.60 } \end{array} \right.
Solve for x, y, z, w
x=16.65
y=6.65
z=3.1
w=8.3
Share
Copied to clipboard
x=16.65
Consider the second equation. Multiply 27.75 and 0.6 to get 16.65.
w=8+0.3
Consider the fourth equation. Multiply 0.5 and 0.6 to get 0.3.
w=8.3
Add 8 and 0.3 to get 8.3.
16.65+3y+3.1+8.3=48
Consider the first equation. Insert the known values of variables into the equation.
19.75+3y+8.3=48
Add 16.65 and 3.1 to get 19.75.
28.05+3y=48
Add 19.75 and 8.3 to get 28.05.
3y=48-28.05
Subtract 28.05 from both sides.
3y=19.95
Subtract 28.05 from 48 to get 19.95.
y=\frac{19.95}{3}
Divide both sides by 3.
y=\frac{1995}{300}
Expand \frac{19.95}{3} by multiplying both numerator and the denominator by 100.
y=\frac{133}{20}
Reduce the fraction \frac{1995}{300} to lowest terms by extracting and canceling out 15.
x=16.65 y=\frac{133}{20} z=3.1 w=8.3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}