\left\{ \begin{array} { l } { x + 2 y - z = 8 } \\ { 2 x + 2 y - z = 10 } \\ { 2 x + 3 y + z = 5 } \end{array} \right.
Solve for x, y, z
x=2
y = \frac{7}{5} = 1\frac{2}{5} = 1.4
z = -\frac{16}{5} = -3\frac{1}{5} = -3.2
Share
Copied to clipboard
x=-2y+z+8
Solve x+2y-z=8 for x.
2\left(-2y+z+8\right)+2y-z=10 2\left(-2y+z+8\right)+3y+z=5
Substitute -2y+z+8 for x in the second and third equation.
y=\frac{1}{2}z+3 z=-\frac{11}{3}+\frac{1}{3}y
Solve these equations for y and z respectively.
z=-\frac{11}{3}+\frac{1}{3}\left(\frac{1}{2}z+3\right)
Substitute \frac{1}{2}z+3 for y in the equation z=-\frac{11}{3}+\frac{1}{3}y.
z=-\frac{16}{5}
Solve z=-\frac{11}{3}+\frac{1}{3}\left(\frac{1}{2}z+3\right) for z.
y=\frac{1}{2}\left(-\frac{16}{5}\right)+3
Substitute -\frac{16}{5} for z in the equation y=\frac{1}{2}z+3.
y=\frac{7}{5}
Calculate y from y=\frac{1}{2}\left(-\frac{16}{5}\right)+3.
x=-2\times \frac{7}{5}-\frac{16}{5}+8
Substitute \frac{7}{5} for y and -\frac{16}{5} for z in the equation x=-2y+z+8.
x=2
Calculate x from x=-2\times \frac{7}{5}-\frac{16}{5}+8.
x=2 y=\frac{7}{5} z=-\frac{16}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}