\left\{ \begin{array} { l } { x + 2 y - 4 = 0 } \\ { x ^ { 2 } + y ^ { 2 } = 4 } \end{array} \right.
Solve for x, y
x=0\text{, }y=2
x=\frac{8}{5}=1.6\text{, }y=\frac{6}{5}=1.2
Graph
Share
Copied to clipboard
x+2y-4=0,y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y-4=0
Solve x+2y-4=0 for x by isolating x on the left hand side of the equal sign.
x+2y=4
Add 4 to both sides of the equation.
x=-2y+4
Subtract 2y from both sides of the equation.
y^{2}+\left(-2y+4\right)^{2}=4
Substitute -2y+4 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+4y^{2}-16y+16=4
Square -2y+4.
5y^{2}-16y+16=4
Add y^{2} to 4y^{2}.
5y^{2}-16y+12=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\times 12}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-2\right)^{2} for a, 1\times 4\left(-2\right)\times 2 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 5\times 12}}{2\times 5}
Square 1\times 4\left(-2\right)\times 2.
y=\frac{-\left(-16\right)±\sqrt{256-20\times 12}}{2\times 5}
Multiply -4 times 1+1\left(-2\right)^{2}.
y=\frac{-\left(-16\right)±\sqrt{256-240}}{2\times 5}
Multiply -20 times 12.
y=\frac{-\left(-16\right)±\sqrt{16}}{2\times 5}
Add 256 to -240.
y=\frac{-\left(-16\right)±4}{2\times 5}
Take the square root of 16.
y=\frac{16±4}{2\times 5}
The opposite of 1\times 4\left(-2\right)\times 2 is 16.
y=\frac{16±4}{10}
Multiply 2 times 1+1\left(-2\right)^{2}.
y=\frac{20}{10}
Now solve the equation y=\frac{16±4}{10} when ± is plus. Add 16 to 4.
y=2
Divide 20 by 10.
y=\frac{12}{10}
Now solve the equation y=\frac{16±4}{10} when ± is minus. Subtract 4 from 16.
y=\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
x=-2\times 2+4
There are two solutions for y: 2 and \frac{6}{5}. Substitute 2 for y in the equation x=-2y+4 to find the corresponding solution for x that satisfies both equations.
x=-4+4
Multiply -2 times 2.
x=0
Add -2\times 2 to 4.
x=-2\times \frac{6}{5}+4
Now substitute \frac{6}{5} for y in the equation x=-2y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{12}{5}+4
Multiply -2 times \frac{6}{5}.
x=\frac{8}{5}
Add -2\times \frac{6}{5} to 4.
x=0,y=2\text{ or }x=\frac{8}{5},y=\frac{6}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}