\left\{ \begin{array} { l } { x + 2 y - 3 z = - 2 } \\ { 2 x - 2 y + z = 7 } \\ { x + y + 2 z = 4 } \end{array} \right.
Solve for x, y, z
x = \frac{55}{23} = 2\frac{9}{23} \approx 2.391304348
y=-\frac{13}{23}\approx -0.565217391
z = \frac{25}{23} = 1\frac{2}{23} \approx 1.086956522
Share
Copied to clipboard
x=-2y+3z-2
Solve x+2y-3z=-2 for x.
2\left(-2y+3z-2\right)-2y+z=7 -2y+3z-2+y+2z=4
Substitute -2y+3z-2 for x in the second and third equation.
y=-\frac{11}{6}+\frac{7}{6}z z=\frac{6}{5}+\frac{1}{5}y
Solve these equations for y and z respectively.
z=\frac{6}{5}+\frac{1}{5}\left(-\frac{11}{6}+\frac{7}{6}z\right)
Substitute -\frac{11}{6}+\frac{7}{6}z for y in the equation z=\frac{6}{5}+\frac{1}{5}y.
z=\frac{25}{23}
Solve z=\frac{6}{5}+\frac{1}{5}\left(-\frac{11}{6}+\frac{7}{6}z\right) for z.
y=-\frac{11}{6}+\frac{7}{6}\times \frac{25}{23}
Substitute \frac{25}{23} for z in the equation y=-\frac{11}{6}+\frac{7}{6}z.
y=-\frac{13}{23}
Calculate y from y=-\frac{11}{6}+\frac{7}{6}\times \frac{25}{23}.
x=-2\left(-\frac{13}{23}\right)+3\times \frac{25}{23}-2
Substitute -\frac{13}{23} for y and \frac{25}{23} for z in the equation x=-2y+3z-2.
x=\frac{55}{23}
Calculate x from x=-2\left(-\frac{13}{23}\right)+3\times \frac{25}{23}-2.
x=\frac{55}{23} y=-\frac{13}{23} z=\frac{25}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}