Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-2y+3z-2
Solve x+2y-3z=-2 for x.
2\left(-2y+3z-2\right)-2y+z=7 -2y+3z-2+y+2z=4
Substitute -2y+3z-2 for x in the second and third equation.
y=-\frac{11}{6}+\frac{7}{6}z z=\frac{6}{5}+\frac{1}{5}y
Solve these equations for y and z respectively.
z=\frac{6}{5}+\frac{1}{5}\left(-\frac{11}{6}+\frac{7}{6}z\right)
Substitute -\frac{11}{6}+\frac{7}{6}z for y in the equation z=\frac{6}{5}+\frac{1}{5}y.
z=\frac{25}{23}
Solve z=\frac{6}{5}+\frac{1}{5}\left(-\frac{11}{6}+\frac{7}{6}z\right) for z.
y=-\frac{11}{6}+\frac{7}{6}\times \frac{25}{23}
Substitute \frac{25}{23} for z in the equation y=-\frac{11}{6}+\frac{7}{6}z.
y=-\frac{13}{23}
Calculate y from y=-\frac{11}{6}+\frac{7}{6}\times \frac{25}{23}.
x=-2\left(-\frac{13}{23}\right)+3\times \frac{25}{23}-2
Substitute -\frac{13}{23} for y and \frac{25}{23} for z in the equation x=-2y+3z-2.
x=\frac{55}{23}
Calculate x from x=-2\left(-\frac{13}{23}\right)+3\times \frac{25}{23}-2.
x=\frac{55}{23} y=-\frac{13}{23} z=\frac{25}{23}
The system is now solved.