\left\{ \begin{array} { l } { x + 2 y - 3 = 0 } \\ { x ^ { 2 } + 2 y ^ { 2 } = 4 } \end{array} \right.
Solve for x, y
x=\frac{\sqrt{6}}{3}+1\approx 1.816496581\text{, }y=-\frac{\sqrt{6}}{6}+1\approx 0.59175171
x=-\frac{\sqrt{6}}{3}+1\approx 0.183503419\text{, }y=\frac{\sqrt{6}}{6}+1\approx 1.40824829
Graph
Share
Copied to clipboard
x+2y-3=0,2y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y-3=0
Solve x+2y-3=0 for x by isolating x on the left hand side of the equal sign.
x+2y=3
Add 3 to both sides of the equation.
x=-2y+3
Subtract 2y from both sides of the equation.
2y^{2}+\left(-2y+3\right)^{2}=4
Substitute -2y+3 for x in the other equation, 2y^{2}+x^{2}=4.
2y^{2}+4y^{2}-12y+9=4
Square -2y+3.
6y^{2}-12y+9=4
Add 2y^{2} to 4y^{2}.
6y^{2}-12y+5=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 6\times 5}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2+1\left(-2\right)^{2} for a, 1\times 3\left(-2\right)\times 2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 6\times 5}}{2\times 6}
Square 1\times 3\left(-2\right)\times 2.
y=\frac{-\left(-12\right)±\sqrt{144-24\times 5}}{2\times 6}
Multiply -4 times 2+1\left(-2\right)^{2}.
y=\frac{-\left(-12\right)±\sqrt{144-120}}{2\times 6}
Multiply -24 times 5.
y=\frac{-\left(-12\right)±\sqrt{24}}{2\times 6}
Add 144 to -120.
y=\frac{-\left(-12\right)±2\sqrt{6}}{2\times 6}
Take the square root of 24.
y=\frac{12±2\sqrt{6}}{2\times 6}
The opposite of 1\times 3\left(-2\right)\times 2 is 12.
y=\frac{12±2\sqrt{6}}{12}
Multiply 2 times 2+1\left(-2\right)^{2}.
y=\frac{2\sqrt{6}+12}{12}
Now solve the equation y=\frac{12±2\sqrt{6}}{12} when ± is plus. Add 12 to 2\sqrt{6}.
y=\frac{\sqrt{6}}{6}+1
Divide 12+2\sqrt{6} by 12.
y=\frac{12-2\sqrt{6}}{12}
Now solve the equation y=\frac{12±2\sqrt{6}}{12} when ± is minus. Subtract 2\sqrt{6} from 12.
y=-\frac{\sqrt{6}}{6}+1
Divide 12-2\sqrt{6} by 12.
x=-2\left(\frac{\sqrt{6}}{6}+1\right)+3
There are two solutions for y: 1+\frac{\sqrt{6}}{6} and 1-\frac{\sqrt{6}}{6}. Substitute 1+\frac{\sqrt{6}}{6} for y in the equation x=-2y+3 to find the corresponding solution for x that satisfies both equations.
x=-2\left(-\frac{\sqrt{6}}{6}+1\right)+3
Now substitute 1-\frac{\sqrt{6}}{6} for y in the equation x=-2y+3 and solve to find the corresponding solution for x that satisfies both equations.
x=-2\left(\frac{\sqrt{6}}{6}+1\right)+3,y=\frac{\sqrt{6}}{6}+1\text{ or }x=-2\left(-\frac{\sqrt{6}}{6}+1\right)+3,y=-\frac{\sqrt{6}}{6}+1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}