Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=1680,7x+y=2280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=1680
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+1680
Subtract 2y from both sides of the equation.
7\left(-2y+1680\right)+y=2280
Substitute -2y+1680 for x in the other equation, 7x+y=2280.
-14y+11760+y=2280
Multiply 7 times -2y+1680.
-13y+11760=2280
Add -14y to y.
-13y=-9480
Subtract 11760 from both sides of the equation.
y=\frac{9480}{13}
Divide both sides by -13.
x=-2\times \frac{9480}{13}+1680
Substitute \frac{9480}{13} for y in x=-2y+1680. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{18960}{13}+1680
Multiply -2 times \frac{9480}{13}.
x=\frac{2880}{13}
Add 1680 to -\frac{18960}{13}.
x=\frac{2880}{13},y=\frac{9480}{13}
The system is now solved.
x+2y=1680,7x+y=2280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1680\\2280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\7&1\end{matrix}\right))\left(\begin{matrix}1&2\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\7&1\end{matrix}\right))\left(\begin{matrix}1680\\2280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\7&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\7&1\end{matrix}\right))\left(\begin{matrix}1680\\2280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\7&1\end{matrix}\right))\left(\begin{matrix}1680\\2280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 7}&-\frac{2}{1-2\times 7}\\-\frac{7}{1-2\times 7}&\frac{1}{1-2\times 7}\end{matrix}\right)\left(\begin{matrix}1680\\2280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{2}{13}\\\frac{7}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}1680\\2280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 1680+\frac{2}{13}\times 2280\\\frac{7}{13}\times 1680-\frac{1}{13}\times 2280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2880}{13}\\\frac{9480}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{2880}{13},y=\frac{9480}{13}
Extract the matrix elements x and y.
x+2y=1680,7x+y=2280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7x+7\times 2y=7\times 1680,7x+y=2280
To make x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 1.
7x+14y=11760,7x+y=2280
Simplify.
7x-7x+14y-y=11760-2280
Subtract 7x+y=2280 from 7x+14y=11760 by subtracting like terms on each side of the equal sign.
14y-y=11760-2280
Add 7x to -7x. Terms 7x and -7x cancel out, leaving an equation with only one variable that can be solved.
13y=11760-2280
Add 14y to -y.
13y=9480
Add 11760 to -2280.
y=\frac{9480}{13}
Divide both sides by 13.
7x+\frac{9480}{13}=2280
Substitute \frac{9480}{13} for y in 7x+y=2280. Because the resulting equation contains only one variable, you can solve for x directly.
7x=\frac{20160}{13}
Subtract \frac{9480}{13} from both sides of the equation.
x=\frac{2880}{13}
Divide both sides by 7.
x=\frac{2880}{13},y=\frac{9480}{13}
The system is now solved.