\left\{ \begin{array} { l } { x + 2 y = 1055 } \\ { 2 x + 17 y = 1055 } \end{array} \right.
Solve for x, y
x = \frac{15825}{13} = 1217\frac{4}{13} \approx 1217.307692308
y = -\frac{1055}{13} = -81\frac{2}{13} \approx -81.153846154
Graph
Share
Copied to clipboard
x+2y=1055,2x+17y=1055
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=1055
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+1055
Subtract 2y from both sides of the equation.
2\left(-2y+1055\right)+17y=1055
Substitute -2y+1055 for x in the other equation, 2x+17y=1055.
-4y+2110+17y=1055
Multiply 2 times -2y+1055.
13y+2110=1055
Add -4y to 17y.
13y=-1055
Subtract 2110 from both sides of the equation.
y=-\frac{1055}{13}
Divide both sides by 13.
x=-2\left(-\frac{1055}{13}\right)+1055
Substitute -\frac{1055}{13} for y in x=-2y+1055. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2110}{13}+1055
Multiply -2 times -\frac{1055}{13}.
x=\frac{15825}{13}
Add 1055 to \frac{2110}{13}.
x=\frac{15825}{13},y=-\frac{1055}{13}
The system is now solved.
x+2y=1055,2x+17y=1055
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\2&17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1055\\1055\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\2&17\end{matrix}\right))\left(\begin{matrix}1&2\\2&17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&17\end{matrix}\right))\left(\begin{matrix}1055\\1055\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\2&17\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&17\end{matrix}\right))\left(\begin{matrix}1055\\1055\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&17\end{matrix}\right))\left(\begin{matrix}1055\\1055\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{17-2\times 2}&-\frac{2}{17-2\times 2}\\-\frac{2}{17-2\times 2}&\frac{1}{17-2\times 2}\end{matrix}\right)\left(\begin{matrix}1055\\1055\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{13}&-\frac{2}{13}\\-\frac{2}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}1055\\1055\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{13}\times 1055-\frac{2}{13}\times 1055\\-\frac{2}{13}\times 1055+\frac{1}{13}\times 1055\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15825}{13}\\-\frac{1055}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{15825}{13},y=-\frac{1055}{13}
Extract the matrix elements x and y.
x+2y=1055,2x+17y=1055
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2\times 2y=2\times 1055,2x+17y=1055
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+4y=2110,2x+17y=1055
Simplify.
2x-2x+4y-17y=2110-1055
Subtract 2x+17y=1055 from 2x+4y=2110 by subtracting like terms on each side of the equal sign.
4y-17y=2110-1055
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-13y=2110-1055
Add 4y to -17y.
-13y=1055
Add 2110 to -1055.
y=-\frac{1055}{13}
Divide both sides by -13.
2x+17\left(-\frac{1055}{13}\right)=1055
Substitute -\frac{1055}{13} for y in 2x+17y=1055. Because the resulting equation contains only one variable, you can solve for x directly.
2x-\frac{17935}{13}=1055
Multiply 17 times -\frac{1055}{13}.
2x=\frac{31650}{13}
Add \frac{17935}{13} to both sides of the equation.
x=\frac{15825}{13}
Divide both sides by 2.
x=\frac{15825}{13},y=-\frac{1055}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}