\left\{ \begin{array} { l } { x + 2 y = 10 } \\ { 3 x ^ { 2 } - y ^ { 2 } = 11 } \end{array} \right.
Solve for x, y
x=\frac{2\sqrt{421}-10}{11}\approx 2.821506278\text{, }y=\frac{60-\sqrt{421}}{11}\approx 3.589246861
x=\frac{-2\sqrt{421}-10}{11}\approx -4.639688096\text{, }y=\frac{\sqrt{421}+60}{11}\approx 7.319844048
Graph
Share
Copied to clipboard
x+2y=10,-y^{2}+3x^{2}=11
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=10
Solve x+2y=10 for x by isolating x on the left hand side of the equal sign.
x=-2y+10
Subtract 2y from both sides of the equation.
-y^{2}+3\left(-2y+10\right)^{2}=11
Substitute -2y+10 for x in the other equation, -y^{2}+3x^{2}=11.
-y^{2}+3\left(4y^{2}-40y+100\right)=11
Square -2y+10.
-y^{2}+12y^{2}-120y+300=11
Multiply 3 times 4y^{2}-40y+100.
11y^{2}-120y+300=11
Add -y^{2} to 12y^{2}.
11y^{2}-120y+289=0
Subtract 11 from both sides of the equation.
y=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 11\times 289}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+3\left(-2\right)^{2} for a, 3\times 10\left(-2\right)\times 2 for b, and 289 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-120\right)±\sqrt{14400-4\times 11\times 289}}{2\times 11}
Square 3\times 10\left(-2\right)\times 2.
y=\frac{-\left(-120\right)±\sqrt{14400-44\times 289}}{2\times 11}
Multiply -4 times -1+3\left(-2\right)^{2}.
y=\frac{-\left(-120\right)±\sqrt{14400-12716}}{2\times 11}
Multiply -44 times 289.
y=\frac{-\left(-120\right)±\sqrt{1684}}{2\times 11}
Add 14400 to -12716.
y=\frac{-\left(-120\right)±2\sqrt{421}}{2\times 11}
Take the square root of 1684.
y=\frac{120±2\sqrt{421}}{2\times 11}
The opposite of 3\times 10\left(-2\right)\times 2 is 120.
y=\frac{120±2\sqrt{421}}{22}
Multiply 2 times -1+3\left(-2\right)^{2}.
y=\frac{2\sqrt{421}+120}{22}
Now solve the equation y=\frac{120±2\sqrt{421}}{22} when ± is plus. Add 120 to 2\sqrt{421}.
y=\frac{\sqrt{421}+60}{11}
Divide 120+2\sqrt{421} by 22.
y=\frac{120-2\sqrt{421}}{22}
Now solve the equation y=\frac{120±2\sqrt{421}}{22} when ± is minus. Subtract 2\sqrt{421} from 120.
y=\frac{60-\sqrt{421}}{11}
Divide 120-2\sqrt{421} by 22.
x=-2\times \frac{\sqrt{421}+60}{11}+10
There are two solutions for y: \frac{60+\sqrt{421}}{11} and \frac{60-\sqrt{421}}{11}. Substitute \frac{60+\sqrt{421}}{11} for y in the equation x=-2y+10 to find the corresponding solution for x that satisfies both equations.
x=-2\times \frac{60-\sqrt{421}}{11}+10
Now substitute \frac{60-\sqrt{421}}{11} for y in the equation x=-2y+10 and solve to find the corresponding solution for x that satisfies both equations.
x=-2\times \frac{\sqrt{421}+60}{11}+10,y=\frac{\sqrt{421}+60}{11}\text{ or }x=-2\times \frac{60-\sqrt{421}}{11}+10,y=\frac{60-\sqrt{421}}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}