\left\{ \begin{array} { l } { x + 2 ( x + 2 y ) = 40 } \\ { x _ { 1 } + 2 y = 2 } \end{array} \right.
Solve for x, y
x=\frac{2x_{1}}{3}+12
y=-\frac{x_{1}}{2}+1
Graph
Share
Copied to clipboard
2y=2-x_{1}
Consider the second equation. Subtract x_{1} from both sides.
x+2x+4y=40
Consider the first equation. Use the distributive property to multiply 2 by x+2y.
3x+4y=40
Combine x and 2x to get 3x.
2y=2-x_{1},4y+3x=40
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y=2-x_{1}
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
y=-\frac{x_{1}}{2}+1
Divide both sides by 2.
4\left(-\frac{x_{1}}{2}+1\right)+3x=40
Substitute 1-\frac{x_{1}}{2} for y in the other equation, 4y+3x=40.
4-2x_{1}+3x=40
Multiply 4 times 1-\frac{x_{1}}{2}.
3x=2x_{1}+36
Subtract 4-2x_{1} from both sides of the equation.
x=\frac{2x_{1}}{3}+12
Divide both sides by 3.
y=-\frac{x_{1}}{2}+1,x=\frac{2x_{1}}{3}+12
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}