\left\{ \begin{array} { l } { x + 2 + z = 73 } \\ { x + 2 x - 2 = 7 } \\ { 3 x - y + z = 23 } \end{array} \right.
Solve for x, z, y
x=3
y=54
z=68
Share
Copied to clipboard
3x-2=7
Consider the second equation. Combine x and 2x to get 3x.
3x=7+2
Add 2 to both sides.
3x=9
Add 7 and 2 to get 9.
x=\frac{9}{3}
Divide both sides by 3.
x=3
Divide 9 by 3 to get 3.
3+2+z=73
Consider the first equation. Insert the known values of variables into the equation.
5+z=73
Add 3 and 2 to get 5.
z=73-5
Subtract 5 from both sides.
z=68
Subtract 5 from 73 to get 68.
3\times 3-y+68=23
Consider the third equation. Insert the known values of variables into the equation.
9-y+68=23
Multiply 3 and 3 to get 9.
77-y=23
Add 9 and 68 to get 77.
-y=23-77
Subtract 77 from both sides.
-y=-54
Subtract 77 from 23 to get -54.
y=\frac{-54}{-1}
Divide both sides by -1.
y=54
Fraction \frac{-54}{-1} can be simplified to 54 by removing the negative sign from both the numerator and the denominator.
x=3 z=68 y=54
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}