\left\{ \begin{array} { l } { x + 0.02 y = 15 } \\ { \frac { 0.02 y } { 15 } = 0.4 } \end{array} \right.
Solve for x, y
x=9
y=300
Graph
Share
Copied to clipboard
0.02y=0.4\times 15
Consider the second equation. Multiply both sides by 15.
0.02y=6
Multiply 0.4 and 15 to get 6.
y=\frac{6}{0.02}
Divide both sides by 0.02.
y=\frac{600}{2}
Expand \frac{6}{0.02} by multiplying both numerator and the denominator by 100.
y=300
Divide 600 by 2 to get 300.
x+0.02\times 300=15
Consider the first equation. Insert the known values of variables into the equation.
x+6=15
Multiply 0.02 and 300 to get 6.
x=15-6
Subtract 6 from both sides.
x=9
Subtract 6 from 15 to get 9.
x=9 y=300
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}