\left\{ \begin{array} { l } { x + \frac { y + z } { 4 } = 0 } \\ { \frac { x } { 2 } + \frac { 2 y + z } { 9 } = 0 } \\ { \frac { x } { 3 } + \frac { 3 y + z } { 16 } = \frac { 1 } { 24 } } \end{array} \right.
Solve for x, y, z
x=2
y=-1
z=-7
Share
Copied to clipboard
4x+y+z=0 9x+4y+2z=0 16x+9y+3z=2
Multiply each equation by the least common multiple of denominators in it. Simplify.
y=-4x-z
Solve 4x+y+z=0 for y.
9x+4\left(-4x-z\right)+2z=0 16x+9\left(-4x-z\right)+3z=2
Substitute -4x-z for y in the second and third equation.
x=-\frac{2}{7}z z=-\frac{1}{3}-\frac{10}{3}x
Solve these equations for x and z respectively.
z=-\frac{1}{3}-\frac{10}{3}\left(-\frac{2}{7}\right)z
Substitute -\frac{2}{7}z for x in the equation z=-\frac{1}{3}-\frac{10}{3}x.
z=-7
Solve z=-\frac{1}{3}-\frac{10}{3}\left(-\frac{2}{7}\right)z for z.
x=-\frac{2}{7}\left(-7\right)
Substitute -7 for z in the equation x=-\frac{2}{7}z.
x=2
Calculate x from x=-\frac{2}{7}\left(-7\right).
y=-4\times 2-\left(-7\right)
Substitute 2 for x and -7 for z in the equation y=-4x-z.
y=-1
Calculate y from y=-4\times 2-\left(-7\right).
x=2 y=-1 z=-7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}