\left\{ \begin{array} { l } { n ^ { 2 } = 2 m ^ { 2 } } \\ { 2 = 2 m + n } \end{array} \right.
Solve for n, m
n=2\sqrt{2}-2\approx 0.828427125\text{, }m=2-\sqrt{2}\approx 0.585786438
n=-2\sqrt{2}-2\approx -4.828427125\text{, }m=\sqrt{2}+2\approx 3.414213562
Share
Copied to clipboard
n^{2}-2m^{2}=0
Consider the first equation. Subtract 2m^{2} from both sides.
2m+n=2
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
2m+n=2,n^{2}-2m^{2}=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2m+n=2
Solve 2m+n=2 for m by isolating m on the left hand side of the equal sign.
2m=-n+2
Subtract n from both sides of the equation.
m=-\frac{1}{2}n+1
Divide both sides by 2.
n^{2}-2\left(-\frac{1}{2}n+1\right)^{2}=0
Substitute -\frac{1}{2}n+1 for m in the other equation, n^{2}-2m^{2}=0.
n^{2}-2\left(\frac{1}{4}n^{2}-n+1\right)=0
Square -\frac{1}{2}n+1.
n^{2}-\frac{1}{2}n^{2}+2n-2=0
Multiply -2 times \frac{1}{4}n^{2}-n+1.
\frac{1}{2}n^{2}+2n-2=0
Add n^{2} to -\frac{1}{2}n^{2}.
n=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-2\left(-\frac{1}{2}\right)^{2} for a, -2\left(-\frac{1}{2}\right)\times 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-2±\sqrt{4-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Square -2\left(-\frac{1}{2}\right)\times 2.
n=\frac{-2±\sqrt{4-2\left(-2\right)}}{2\times \frac{1}{2}}
Multiply -4 times 1-2\left(-\frac{1}{2}\right)^{2}.
n=\frac{-2±\sqrt{4+4}}{2\times \frac{1}{2}}
Multiply -2 times -2.
n=\frac{-2±\sqrt{8}}{2\times \frac{1}{2}}
Add 4 to 4.
n=\frac{-2±2\sqrt{2}}{2\times \frac{1}{2}}
Take the square root of 8.
n=\frac{-2±2\sqrt{2}}{1}
Multiply 2 times 1-2\left(-\frac{1}{2}\right)^{2}.
n=\frac{2\sqrt{2}-2}{1}
Now solve the equation n=\frac{-2±2\sqrt{2}}{1} when ± is plus. Add -2 to 2\sqrt{2}.
n=2\sqrt{2}-2
Divide -2+2\sqrt{2} by 1.
n=\frac{-2\sqrt{2}-2}{1}
Now solve the equation n=\frac{-2±2\sqrt{2}}{1} when ± is minus. Subtract 2\sqrt{2} from -2.
n=-2\sqrt{2}-2
Divide -2-2\sqrt{2} by 1.
m=-\frac{1}{2}\left(2\sqrt{2}-2\right)+1
There are two solutions for n: -2+2\sqrt{2} and -2-2\sqrt{2}. Substitute -2+2\sqrt{2} for n in the equation m=-\frac{1}{2}n+1 to find the corresponding solution for m that satisfies both equations.
m=-\frac{2\sqrt{2}-2}{2}+1
Multiply -\frac{1}{2} times -2+2\sqrt{2}.
m=-\frac{1}{2}\left(-2\sqrt{2}-2\right)+1
Now substitute -2-2\sqrt{2} for n in the equation m=-\frac{1}{2}n+1 and solve to find the corresponding solution for m that satisfies both equations.
m=-\frac{-2\sqrt{2}-2}{2}+1
Multiply -\frac{1}{2} times -2-2\sqrt{2}.
m=-\frac{2\sqrt{2}-2}{2}+1,n=2\sqrt{2}-2\text{ or }m=-\frac{-2\sqrt{2}-2}{2}+1,n=-2\sqrt{2}-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}