Skip to main content
Solve for m, n
Tick mark Image

Similar Problems from Web Search

Share

m-n=\frac{3\sqrt{2}}{5},n^{2}+m^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
m-n=\frac{3\sqrt{2}}{5}
Solve m-n=\frac{3\sqrt{2}}{5} for m by isolating m on the left hand side of the equal sign.
m=n+\frac{3\sqrt{2}}{5}
Subtract -n from both sides of the equation.
n^{2}+\left(n+\frac{3\sqrt{2}}{5}\right)^{2}=1
Substitute n+\frac{3\sqrt{2}}{5} for m in the other equation, n^{2}+m^{2}=1.
n^{2}+n^{2}+2\times \frac{3\sqrt{2}}{5}n+\left(\frac{3\sqrt{2}}{5}\right)^{2}=1
Square n+\frac{3\sqrt{2}}{5}.
2n^{2}+2\times \frac{3\sqrt{2}}{5}n+\left(\frac{3\sqrt{2}}{5}\right)^{2}=1
Add n^{2} to n^{2}.
2n^{2}+2\times \frac{3\sqrt{2}}{5}n+\left(\frac{3\sqrt{2}}{5}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\left(2\times \frac{3\sqrt{2}}{5}\right)^{2}-4\times 2\left(-\frac{7}{25}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 2\times \frac{3\sqrt{2}}{5} for b, and -\frac{7}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{72}{25}-4\times 2\left(-\frac{7}{25}\right)}}{2\times 2}
Square 1\times 1\times 2\times \frac{3\sqrt{2}}{5}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{72}{25}-8\left(-\frac{7}{25}\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{72+56}{25}}}{2\times 2}
Multiply -8 times -\frac{7}{25}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{128}{25}}}{2\times 2}
Add \frac{72}{25} to \frac{56}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{2\times 2}
Take the square root of \frac{128}{25}.
n=\frac{-\frac{6\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{4}
Multiply 2 times 1+1\times 1^{2}.
n=\frac{2\sqrt{2}}{4\times 5}
Now solve the equation n=\frac{-\frac{6\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{4} when ± is plus. Add -\frac{6\sqrt{2}}{5} to \frac{8\sqrt{2}}{5}.
n=\frac{\sqrt{2}}{10}
Divide \frac{2\sqrt{2}}{5} by 4.
n=-\frac{\frac{14\sqrt{2}}{5}}{4}
Now solve the equation n=\frac{-\frac{6\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{4} when ± is minus. Subtract \frac{8\sqrt{2}}{5} from -\frac{6\sqrt{2}}{5}.
n=-\frac{7\sqrt{2}}{10}
Divide -\frac{14\sqrt{2}}{5} by 4.
m=\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}}{5}
There are two solutions for n: \frac{\sqrt{2}}{10} and -\frac{7\sqrt{2}}{10}. Substitute \frac{\sqrt{2}}{10} for n in the equation m=n+\frac{3\sqrt{2}}{5} to find the corresponding solution for m that satisfies both equations.
m=-\frac{7\sqrt{2}}{10}+\frac{3\sqrt{2}}{5}
Now substitute -\frac{7\sqrt{2}}{10} for n in the equation m=n+\frac{3\sqrt{2}}{5} and solve to find the corresponding solution for m that satisfies both equations.
m=\frac{3\sqrt{2}}{5}-\frac{7\sqrt{2}}{10}
Add 1\left(-\frac{7\sqrt{2}}{10}\right) to \frac{3\sqrt{2}}{5}.
m=\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}}{5},n=\frac{\sqrt{2}}{10}\text{ or }m=\frac{3\sqrt{2}}{5}-\frac{7\sqrt{2}}{10},n=-\frac{7\sqrt{2}}{10}
The system is now solved.