\left\{ \begin{array} { l } { m - n = \frac { 3 } { 5 } \sqrt { 2 } } \\ { m ^ { 2 } + n ^ { 2 } = 1 } \end{array} \right.
Solve for m, n
m=-\frac{\sqrt{2}}{10}\approx -0.141421356\text{, }n=-\frac{7\sqrt{2}}{10}\approx -0.989949494
m=\frac{7\sqrt{2}}{10}\approx 0.989949494\text{, }n=\frac{\sqrt{2}}{10}\approx 0.141421356
Share
Copied to clipboard
m-n=\frac{3\sqrt{2}}{5},n^{2}+m^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
m-n=\frac{3\sqrt{2}}{5}
Solve m-n=\frac{3\sqrt{2}}{5} for m by isolating m on the left hand side of the equal sign.
m=n+\frac{3\sqrt{2}}{5}
Subtract -n from both sides of the equation.
n^{2}+\left(n+\frac{3\sqrt{2}}{5}\right)^{2}=1
Substitute n+\frac{3\sqrt{2}}{5} for m in the other equation, n^{2}+m^{2}=1.
n^{2}+n^{2}+2\times \frac{3\sqrt{2}}{5}n+\left(\frac{3\sqrt{2}}{5}\right)^{2}=1
Square n+\frac{3\sqrt{2}}{5}.
2n^{2}+2\times \frac{3\sqrt{2}}{5}n+\left(\frac{3\sqrt{2}}{5}\right)^{2}=1
Add n^{2} to n^{2}.
2n^{2}+2\times \frac{3\sqrt{2}}{5}n+\left(\frac{3\sqrt{2}}{5}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\left(2\times \frac{3\sqrt{2}}{5}\right)^{2}-4\times 2\left(-\frac{7}{25}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 2\times \frac{3\sqrt{2}}{5} for b, and -\frac{7}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{72}{25}-4\times 2\left(-\frac{7}{25}\right)}}{2\times 2}
Square 1\times 1\times 2\times \frac{3\sqrt{2}}{5}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{72}{25}-8\left(-\frac{7}{25}\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{72+56}{25}}}{2\times 2}
Multiply -8 times -\frac{7}{25}.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\sqrt{\frac{128}{25}}}{2\times 2}
Add \frac{72}{25} to \frac{56}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-2\times \frac{3\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{2\times 2}
Take the square root of \frac{128}{25}.
n=\frac{-\frac{6\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{4}
Multiply 2 times 1+1\times 1^{2}.
n=\frac{2\sqrt{2}}{4\times 5}
Now solve the equation n=\frac{-\frac{6\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{4} when ± is plus. Add -\frac{6\sqrt{2}}{5} to \frac{8\sqrt{2}}{5}.
n=\frac{\sqrt{2}}{10}
Divide \frac{2\sqrt{2}}{5} by 4.
n=-\frac{\frac{14\sqrt{2}}{5}}{4}
Now solve the equation n=\frac{-\frac{6\sqrt{2}}{5}±\frac{8\sqrt{2}}{5}}{4} when ± is minus. Subtract \frac{8\sqrt{2}}{5} from -\frac{6\sqrt{2}}{5}.
n=-\frac{7\sqrt{2}}{10}
Divide -\frac{14\sqrt{2}}{5} by 4.
m=\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}}{5}
There are two solutions for n: \frac{\sqrt{2}}{10} and -\frac{7\sqrt{2}}{10}. Substitute \frac{\sqrt{2}}{10} for n in the equation m=n+\frac{3\sqrt{2}}{5} to find the corresponding solution for m that satisfies both equations.
m=-\frac{7\sqrt{2}}{10}+\frac{3\sqrt{2}}{5}
Now substitute -\frac{7\sqrt{2}}{10} for n in the equation m=n+\frac{3\sqrt{2}}{5} and solve to find the corresponding solution for m that satisfies both equations.
m=\frac{3\sqrt{2}}{5}-\frac{7\sqrt{2}}{10}
Add 1\left(-\frac{7\sqrt{2}}{10}\right) to \frac{3\sqrt{2}}{5}.
m=\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}}{5},n=\frac{\sqrt{2}}{10}\text{ or }m=\frac{3\sqrt{2}}{5}-\frac{7\sqrt{2}}{10},n=-\frac{7\sqrt{2}}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}