\left\{ \begin{array} { l } { k x _ { 1 } + k x _ { 2 } + 4 x _ { 3 } = 2 } \\ { ( k + 1 ) x _ { 1 } + ( k + 3 ) x _ { 2 } - k x _ { 3 } = 2 } \\ { ( k + 2 ) x _ { 1 } + ( k - 2 ) x _ { 2 } - ( k - 1 ) x _ { 3 } = h + 2 } \end{array} \right.
Solve for x_1, x_2, x_3
x_{1}=\frac{hk^{2}+4hk+12h+10k+34}{2\left(3k^{2}+11k+16\right)}
x_{2}=-\frac{hk^{2}+4hk+4h-2k-10}{2\left(3k^{2}+11k+16\right)}
x_{3}=\frac{8-hk}{3k^{2}+11k+16}
Solve for x_1, x_2, x_3 (complex solution)
\left\{\begin{matrix}x_{1}=\frac{hk^{2}+4hk+12h+10k+34}{2\left(3k^{2}+11k+16\right)}\text{, }x_{2}=\frac{10+2k-4h-4hk-hk^{2}}{2\left(3k^{2}+11k+16\right)}\text{, }x_{3}=\frac{8-hk}{3k^{2}+11k+16}\text{, }&k\neq \frac{-11+\sqrt{71}i}{6}\text{ and }k\neq \frac{-\sqrt{71}i-11}{6}\\x_{1}=\frac{6-12x_{3}-4kx_{3}-x_{3}k^{2}}{2k}\text{, }x_{2}=\frac{x_{3}k^{2}+4kx_{3}+4x_{3}-2}{2k}\text{, }x_{3}\in \mathrm{C}\text{, }&\left(h=\frac{-11+\sqrt{71}i}{4}\text{ and }k=\frac{-\sqrt{71}i-11}{6}\right)\text{ or }\left(h=\frac{-\sqrt{71}i-11}{4}\text{ and }k=\frac{-11+\sqrt{71}i}{6}\right)\end{matrix}\right.
Share
Copied to clipboard
x_{3}=-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}
Solve kx_{1}+kx_{2}+4x_{3}=2 for x_{3}.
\left(k+1\right)x_{1}+\left(k+3\right)x_{2}-k\left(-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}\right)=2 \left(k+2\right)x_{1}+\left(k-2\right)x_{2}-\left(k-1\right)\left(-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}\right)=h+2
Substitute -\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2} for x_{3} in the second and third equation.
x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1} x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}x_{2}-3\left(8+3k+k^{2}\right)^{-1}kx_{2}-\left(8+3k+k^{2}\right)^{-1}k^{2}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-3\left(8+3k+k^{2}\right)^{-1}k\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-\left(8+3k+k^{2}\right)^{-1}k^{2}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)
Substitute 8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1} for x_{2} in the equation x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}x_{2}-3\left(8+3k+k^{2}\right)^{-1}kx_{2}-\left(8+3k+k^{2}\right)^{-1}k^{2}x_{2}.
x_{1}=17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h
Solve x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-3\left(8+3k+k^{2}\right)^{-1}k\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-\left(8+3k+k^{2}\right)^{-1}k^{2}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right) for x_{1}.
x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-4\left(12+4k+k^{2}\right)^{-1}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\left(12+4k+k^{2}\right)^{-1}k^{2}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)
Substitute 17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h for x_{1} in the equation x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}.
x_{2}=-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1}
Calculate x_{2} from x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-4\left(12+4k+k^{2}\right)^{-1}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\left(12+4k+k^{2}\right)^{-1}k^{2}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right).
x_{3}=-\frac{1}{4}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\frac{1}{4}k\left(-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1}\right)+\frac{1}{2}
Substitute -\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1} for x_{2} and 17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h for x_{1} in the equation x_{3}=-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}.
x_{3}=-\left(3k^{2}+11k+16\right)^{-1}hk+8\left(3k^{2}+11k+16\right)^{-1}
Calculate x_{3} from x_{3}=-\frac{1}{4}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\frac{1}{4}k\left(-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1}\right)+\frac{1}{2}.
x_{1}=17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h x_{2}=-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1} x_{3}=-\left(3k^{2}+11k+16\right)^{-1}hk+8\left(3k^{2}+11k+16\right)^{-1}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}