Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image
Solve for x_1, x_2, x_3 (complex solution)
Tick mark Image

Similar Problems from Web Search

Share

x_{3}=-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}
Solve kx_{1}+kx_{2}+4x_{3}=2 for x_{3}.
\left(k+1\right)x_{1}+\left(k+3\right)x_{2}-k\left(-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}\right)=2 \left(k+2\right)x_{1}+\left(k-2\right)x_{2}-\left(k-1\right)\left(-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}\right)=h+2
Substitute -\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2} for x_{3} in the second and third equation.
x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1} x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}x_{2}-3\left(8+3k+k^{2}\right)^{-1}kx_{2}-\left(8+3k+k^{2}\right)^{-1}k^{2}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-3\left(8+3k+k^{2}\right)^{-1}k\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-\left(8+3k+k^{2}\right)^{-1}k^{2}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)
Substitute 8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1} for x_{2} in the equation x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}x_{2}-3\left(8+3k+k^{2}\right)^{-1}kx_{2}-\left(8+3k+k^{2}\right)^{-1}k^{2}x_{2}.
x_{1}=17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h
Solve x_{1}=6\left(8+3k+k^{2}\right)^{-1}+2\left(8+3k+k^{2}\right)^{-1}k+4\left(8+3k+k^{2}\right)^{-1}h+8\left(8+3k+k^{2}\right)^{-1}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-3\left(8+3k+k^{2}\right)^{-1}k\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right)-\left(8+3k+k^{2}\right)^{-1}k^{2}\left(8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}\right) for x_{1}.
x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-4\left(12+4k+k^{2}\right)^{-1}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\left(12+4k+k^{2}\right)^{-1}k^{2}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)
Substitute 17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h for x_{1} in the equation x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}x_{1}-4\left(12+4k+k^{2}\right)^{-1}kx_{1}-\left(12+4k+k^{2}\right)^{-1}k^{2}x_{1}.
x_{2}=-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1}
Calculate x_{2} from x_{2}=8\left(12+4k+k^{2}\right)^{-1}+2\left(12+4k+k^{2}\right)^{-1}k-4\left(12+4k+k^{2}\right)^{-1}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-4\left(12+4k+k^{2}\right)^{-1}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\left(12+4k+k^{2}\right)^{-1}k^{2}\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right).
x_{3}=-\frac{1}{4}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\frac{1}{4}k\left(-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1}\right)+\frac{1}{2}
Substitute -\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1} for x_{2} and 17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h for x_{1} in the equation x_{3}=-\frac{1}{4}kx_{1}-\frac{1}{4}kx_{2}+\frac{1}{2}.
x_{3}=-\left(3k^{2}+11k+16\right)^{-1}hk+8\left(3k^{2}+11k+16\right)^{-1}
Calculate x_{3} from x_{3}=-\frac{1}{4}k\left(17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h\right)-\frac{1}{4}k\left(-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1}\right)+\frac{1}{2}.
x_{1}=17\left(16+11k+3k^{2}\right)^{-1}+5\left(16+11k+3k^{2}\right)^{-1}k+6\left(16+11k+3k^{2}\right)^{-1}h+2\left(16+11k+3k^{2}\right)^{-1}kh+\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}k^{2}h x_{2}=-\frac{1}{2}\left(16+11k+3k^{2}\right)^{-1}hk^{2}-2\left(16+11k+3k^{2}\right)^{-1}hk+\left(16+11k+3k^{2}\right)^{-1}k-2\left(16+11k+3k^{2}\right)^{-1}h+5\left(16+11k+3k^{2}\right)^{-1} x_{3}=-\left(3k^{2}+11k+16\right)^{-1}hk+8\left(3k^{2}+11k+16\right)^{-1}
The system is now solved.