\left\{ \begin{array} { l } { k + b = 7000 } \\ { 5 k + b = 5000 } \end{array} \right.
Solve for k, b
k=-500
b=7500
Share
Copied to clipboard
k+b=7000,5k+b=5000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
k+b=7000
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
k=-b+7000
Subtract b from both sides of the equation.
5\left(-b+7000\right)+b=5000
Substitute -b+7000 for k in the other equation, 5k+b=5000.
-5b+35000+b=5000
Multiply 5 times -b+7000.
-4b+35000=5000
Add -5b to b.
-4b=-30000
Subtract 35000 from both sides of the equation.
b=7500
Divide both sides by -4.
k=-7500+7000
Substitute 7500 for b in k=-b+7000. Because the resulting equation contains only one variable, you can solve for k directly.
k=-500
Add 7000 to -7500.
k=-500,b=7500
The system is now solved.
k+b=7000,5k+b=5000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\5&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}7000\\5000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}1&1\\5&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}7000\\5000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}7000\\5000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&1\end{matrix}\right))\left(\begin{matrix}7000\\5000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-5}&-\frac{1}{1-5}\\-\frac{5}{1-5}&\frac{1}{1-5}\end{matrix}\right)\left(\begin{matrix}7000\\5000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}7000\\5000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 7000+\frac{1}{4}\times 5000\\\frac{5}{4}\times 7000-\frac{1}{4}\times 5000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-500\\7500\end{matrix}\right)
Do the arithmetic.
k=-500,b=7500
Extract the matrix elements k and b.
k+b=7000,5k+b=5000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
k-5k+b-b=7000-5000
Subtract 5k+b=5000 from k+b=7000 by subtracting like terms on each side of the equal sign.
k-5k=7000-5000
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-4k=7000-5000
Add k to -5k.
-4k=2000
Add 7000 to -5000.
k=-500
Divide both sides by -4.
5\left(-500\right)+b=5000
Substitute -500 for k in 5k+b=5000. Because the resulting equation contains only one variable, you can solve for b directly.
-2500+b=5000
Multiply 5 times -500.
b=7500
Add 2500 to both sides of the equation.
k=-500,b=7500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}