\left\{ \begin{array} { l } { c = 3 a } \\ { c ^ { 2 } = a ^ { 2 } + 4 } \end{array} \right.
Solve for c, a
c=-\frac{3\sqrt{2}}{2}\approx -2.121320344\text{, }a=-\frac{\sqrt{2}}{2}\approx -0.707106781
c=\frac{3\sqrt{2}}{2}\approx 2.121320344\text{, }a=\frac{\sqrt{2}}{2}\approx 0.707106781
Share
Copied to clipboard
c-3a=0
Consider the first equation. Subtract 3a from both sides.
c^{2}-a^{2}=4
Consider the second equation. Subtract a^{2} from both sides.
c-3a=0,-a^{2}+c^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
c-3a=0
Solve c-3a=0 for c by isolating c on the left hand side of the equal sign.
c=3a
Subtract -3a from both sides of the equation.
-a^{2}+\left(3a\right)^{2}=4
Substitute 3a for c in the other equation, -a^{2}+c^{2}=4.
-a^{2}+9a^{2}=4
Square 3a.
8a^{2}=4
Add -a^{2} to 9a^{2}.
8a^{2}-4=0
Subtract 4 from both sides of the equation.
a=\frac{0±\sqrt{0^{2}-4\times 8\left(-4\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\times 3^{2} for a, 1\times 0\times 2\times 3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 8\left(-4\right)}}{2\times 8}
Square 1\times 0\times 2\times 3.
a=\frac{0±\sqrt{-32\left(-4\right)}}{2\times 8}
Multiply -4 times -1+1\times 3^{2}.
a=\frac{0±\sqrt{128}}{2\times 8}
Multiply -32 times -4.
a=\frac{0±8\sqrt{2}}{2\times 8}
Take the square root of 128.
a=\frac{0±8\sqrt{2}}{16}
Multiply 2 times -1+1\times 3^{2}.
a=\frac{\sqrt{2}}{2}
Now solve the equation a=\frac{0±8\sqrt{2}}{16} when ± is plus.
a=-\frac{\sqrt{2}}{2}
Now solve the equation a=\frac{0±8\sqrt{2}}{16} when ± is minus.
c=3\times \frac{\sqrt{2}}{2}
There are two solutions for a: \frac{\sqrt{2}}{2} and -\frac{\sqrt{2}}{2}. Substitute \frac{\sqrt{2}}{2} for a in the equation c=3a to find the corresponding solution for c that satisfies both equations.
c=3\left(-\frac{\sqrt{2}}{2}\right)
Now substitute -\frac{\sqrt{2}}{2} for a in the equation c=3a and solve to find the corresponding solution for c that satisfies both equations.
c=3\times \frac{\sqrt{2}}{2},a=\frac{\sqrt{2}}{2}\text{ or }c=3\left(-\frac{\sqrt{2}}{2}\right),a=-\frac{\sqrt{2}}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}