\left\{ \begin{array} { l } { b = a + b } \\ { 4 = 2 a + b } \end{array} \right.
Solve for b, a
b=4
a=0
Share
Copied to clipboard
b-a=b
Consider the first equation. Subtract a from both sides.
b-a-b=0
Subtract b from both sides.
-a=0
Combine b and -b to get 0.
a=0
Divide both sides by -1. Zero divided by any non-zero number gives zero.
4=2\times 0+b
Consider the second equation. Insert the known values of variables into the equation.
4=0+b
Multiply 2 and 0 to get 0.
4=b
Anything plus zero gives itself.
b=4
Swap sides so that all variable terms are on the left hand side.
b=4 a=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}