\left\{ \begin{array} { l } { b = \frac { 15 } { 4 } } \\ { 0 = 5 k + b } \end{array} \right.
Solve for b, k
b = \frac{15}{4} = 3\frac{3}{4} = 3.75
k=-\frac{3}{4}=-0.75
Share
Copied to clipboard
0=5k+\frac{15}{4}
Consider the second equation. Insert the known values of variables into the equation.
5k+\frac{15}{4}=0
Swap sides so that all variable terms are on the left hand side.
5k=-\frac{15}{4}
Subtract \frac{15}{4} from both sides. Anything subtracted from zero gives its negation.
k=\frac{-\frac{15}{4}}{5}
Divide both sides by 5.
k=\frac{-15}{4\times 5}
Express \frac{-\frac{15}{4}}{5} as a single fraction.
k=\frac{-15}{20}
Multiply 4 and 5 to get 20.
k=-\frac{3}{4}
Reduce the fraction \frac{-15}{20} to lowest terms by extracting and canceling out 5.
b=\frac{15}{4} k=-\frac{3}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}