\left\{ \begin{array} { l } { b = \frac { 1 + \sqrt { 5 } } { 2 } a } \\ { a = 21 } \\ { c = \frac { 1 + \sqrt { 5 } } { 2 } b } \end{array} \right.
Solve for b, a, c
b = \frac{21 {(\sqrt{5} + 1)}}{2} \approx 33.978713764
a=21
c = \frac{21 {(\sqrt{5} + 3)}}{2} \approx 54.978713764
Share
Copied to clipboard
b=\frac{1+\sqrt{5}}{2}\times 21
Consider the first equation. Insert the known values of variables into the equation.
b=\frac{\left(1+\sqrt{5}\right)\times 21}{2}
Express \frac{1+\sqrt{5}}{2}\times 21 as a single fraction.
b=\frac{21+21\sqrt{5}}{2}
Use the distributive property to multiply 1+\sqrt{5} by 21.
b=\frac{21}{2}+\frac{21}{2}\sqrt{5}
Divide each term of 21+21\sqrt{5} by 2 to get \frac{21}{2}+\frac{21}{2}\sqrt{5}.
c=\frac{1+\sqrt{5}}{2}\left(\frac{21}{2}+\frac{21}{2}\sqrt{5}\right)
Consider the third equation. Insert the known values of variables into the equation.
c=\frac{21}{2}\times \frac{1+\sqrt{5}}{2}+\frac{21}{2}\times \frac{1+\sqrt{5}}{2}\sqrt{5}
Use the distributive property to multiply \frac{1+\sqrt{5}}{2} by \frac{21}{2}+\frac{21}{2}\sqrt{5}.
c=\frac{21\left(1+\sqrt{5}\right)}{2\times 2}+\frac{21}{2}\times \frac{1+\sqrt{5}}{2}\sqrt{5}
Multiply \frac{21}{2} times \frac{1+\sqrt{5}}{2} by multiplying numerator times numerator and denominator times denominator.
c=\frac{21\left(1+\sqrt{5}\right)}{2\times 2}+\frac{21\left(1+\sqrt{5}\right)}{2\times 2}\sqrt{5}
Multiply \frac{21}{2} times \frac{1+\sqrt{5}}{2} by multiplying numerator times numerator and denominator times denominator.
c=\frac{21\left(1+\sqrt{5}\right)}{2\times 2}+\frac{21\left(1+\sqrt{5}\right)\sqrt{5}}{2\times 2}
Express \frac{21\left(1+\sqrt{5}\right)}{2\times 2}\sqrt{5} as a single fraction.
c=\frac{21\left(1+\sqrt{5}\right)+21\left(1+\sqrt{5}\right)\sqrt{5}}{2\times 2}
Since \frac{21\left(1+\sqrt{5}\right)}{2\times 2} and \frac{21\left(1+\sqrt{5}\right)\sqrt{5}}{2\times 2} have the same denominator, add them by adding their numerators.
c=\frac{21+21\sqrt{5}+21\sqrt{5}+105}{2\times 2}
Do the multiplications in 21\left(1+\sqrt{5}\right)+21\left(1+\sqrt{5}\right)\sqrt{5}.
c=\frac{126+42\sqrt{5}}{2\times 2}
Do the calculations in 21+21\sqrt{5}+21\sqrt{5}+105.
c=\frac{126+42\sqrt{5}}{4}
Multiply 2 and 2 to get 4.
c=\frac{63}{2}+\frac{21}{2}\sqrt{5}
Divide each term of 126+42\sqrt{5} by 4 to get \frac{63}{2}+\frac{21}{2}\sqrt{5}.
b=\frac{21}{2}+\frac{21}{2}\sqrt{5} a=21 c=\frac{63}{2}+\frac{21}{2}\sqrt{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}