Skip to main content
Solve for b, a, c
Tick mark Image

Similar Problems from Web Search

Share

b=\frac{1+\sqrt{5}}{2}\times 21
Consider the first equation. Insert the known values of variables into the equation.
b=\frac{\left(1+\sqrt{5}\right)\times 21}{2}
Express \frac{1+\sqrt{5}}{2}\times 21 as a single fraction.
b=\frac{21+21\sqrt{5}}{2}
Use the distributive property to multiply 1+\sqrt{5} by 21.
b=\frac{21}{2}+\frac{21}{2}\sqrt{5}
Divide each term of 21+21\sqrt{5} by 2 to get \frac{21}{2}+\frac{21}{2}\sqrt{5}.
c=\frac{1+\sqrt{5}}{2}\left(\frac{21}{2}+\frac{21}{2}\sqrt{5}\right)
Consider the third equation. Insert the known values of variables into the equation.
c=\frac{21}{2}\times \frac{1+\sqrt{5}}{2}+\frac{21}{2}\times \frac{1+\sqrt{5}}{2}\sqrt{5}
Use the distributive property to multiply \frac{1+\sqrt{5}}{2} by \frac{21}{2}+\frac{21}{2}\sqrt{5}.
c=\frac{21\left(1+\sqrt{5}\right)}{2\times 2}+\frac{21}{2}\times \frac{1+\sqrt{5}}{2}\sqrt{5}
Multiply \frac{21}{2} times \frac{1+\sqrt{5}}{2} by multiplying numerator times numerator and denominator times denominator.
c=\frac{21\left(1+\sqrt{5}\right)}{2\times 2}+\frac{21\left(1+\sqrt{5}\right)}{2\times 2}\sqrt{5}
Multiply \frac{21}{2} times \frac{1+\sqrt{5}}{2} by multiplying numerator times numerator and denominator times denominator.
c=\frac{21\left(1+\sqrt{5}\right)}{2\times 2}+\frac{21\left(1+\sqrt{5}\right)\sqrt{5}}{2\times 2}
Express \frac{21\left(1+\sqrt{5}\right)}{2\times 2}\sqrt{5} as a single fraction.
c=\frac{21\left(1+\sqrt{5}\right)+21\left(1+\sqrt{5}\right)\sqrt{5}}{2\times 2}
Since \frac{21\left(1+\sqrt{5}\right)}{2\times 2} and \frac{21\left(1+\sqrt{5}\right)\sqrt{5}}{2\times 2} have the same denominator, add them by adding their numerators.
c=\frac{21+21\sqrt{5}+21\sqrt{5}+105}{2\times 2}
Do the multiplications in 21\left(1+\sqrt{5}\right)+21\left(1+\sqrt{5}\right)\sqrt{5}.
c=\frac{126+42\sqrt{5}}{2\times 2}
Do the calculations in 21+21\sqrt{5}+21\sqrt{5}+105.
c=\frac{126+42\sqrt{5}}{4}
Multiply 2 and 2 to get 4.
c=\frac{63}{2}+\frac{21}{2}\sqrt{5}
Divide each term of 126+42\sqrt{5} by 4 to get \frac{63}{2}+\frac{21}{2}\sqrt{5}.
b=\frac{21}{2}+\frac{21}{2}\sqrt{5} a=21 c=\frac{63}{2}+\frac{21}{2}\sqrt{5}
The system is now solved.