\left\{ \begin{array} { l } { a b + b = 2 a } \\ { 5 b - 4 = - 24 } \end{array} \right.
Solve for a, b
a=-\frac{2}{3}\approx -0.666666667
b=-4
Share
Copied to clipboard
5b=-24+4
Consider the second equation. Add 4 to both sides.
5b=-20
Add -24 and 4 to get -20.
b=\frac{-20}{5}
Divide both sides by 5.
b=-4
Divide -20 by 5 to get -4.
a\left(-4\right)-4=2a
Consider the first equation. Insert the known values of variables into the equation.
a\left(-4\right)-4-2a=0
Subtract 2a from both sides.
-6a-4=0
Combine a\left(-4\right) and -2a to get -6a.
-6a=4
Add 4 to both sides. Anything plus zero gives itself.
a=\frac{4}{-6}
Divide both sides by -6.
a=-\frac{2}{3}
Reduce the fraction \frac{4}{-6} to lowest terms by extracting and canceling out 2.
a=-\frac{2}{3} b=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}