\left\{ \begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 25 ^ { 2 } } \\ { \frac { a } { b } = \frac { 9 } { 32 } } \end{array} \right.
Solve for a, b
a=-\frac{45\sqrt{1105}}{221}\approx -6.768639423\text{, }b=-\frac{160\sqrt{1105}}{221}\approx -24.066273504
a=\frac{45\sqrt{1105}}{221}\approx 6.768639423\text{, }b=\frac{160\sqrt{1105}}{221}\approx 24.066273504
Share
Copied to clipboard
a^{2}+b^{2}=625
Consider the first equation. Calculate 25 to the power of 2 and get 625.
32a=9b
Consider the second equation. Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 32b, the least common multiple of b,32.
a=\frac{9}{32}b
Divide both sides by 32.
b^{2}+\left(\frac{9}{32}b\right)^{2}=625
Substitute \frac{9}{32}b for a in the other equation, b^{2}+a^{2}=625.
b^{2}+\frac{81}{1024}b^{2}=625
Square \frac{9}{32}b.
\frac{1105}{1024}b^{2}=625
Add b^{2} to \frac{81}{1024}b^{2}.
\frac{1105}{1024}b^{2}-625=0
Subtract 625 from both sides of the equation.
b=\frac{0±\sqrt{0^{2}-4\times \frac{1105}{1024}\left(-625\right)}}{2\times \frac{1105}{1024}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{9}{32}\right)^{2} for a, 1\times 0\times \frac{9}{32}\times 2 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times \frac{1105}{1024}\left(-625\right)}}{2\times \frac{1105}{1024}}
Square 1\times 0\times \frac{9}{32}\times 2.
b=\frac{0±\sqrt{-\frac{1105}{256}\left(-625\right)}}{2\times \frac{1105}{1024}}
Multiply -4 times 1+1\times \left(\frac{9}{32}\right)^{2}.
b=\frac{0±\sqrt{\frac{690625}{256}}}{2\times \frac{1105}{1024}}
Multiply -\frac{1105}{256} times -625.
b=\frac{0±\frac{25\sqrt{1105}}{16}}{2\times \frac{1105}{1024}}
Take the square root of \frac{690625}{256}.
b=\frac{0±\frac{25\sqrt{1105}}{16}}{\frac{1105}{512}}
Multiply 2 times 1+1\times \left(\frac{9}{32}\right)^{2}.
b=\frac{160\sqrt{1105}}{221}
Now solve the equation b=\frac{0±\frac{25\sqrt{1105}}{16}}{\frac{1105}{512}} when ± is plus.
b=-\frac{160\sqrt{1105}}{221}
Now solve the equation b=\frac{0±\frac{25\sqrt{1105}}{16}}{\frac{1105}{512}} when ± is minus.
a=\frac{9}{32}\times \frac{160\sqrt{1105}}{221}
There are two solutions for b: \frac{160\sqrt{1105}}{221} and -\frac{160\sqrt{1105}}{221}. Substitute \frac{160\sqrt{1105}}{221} for b in the equation a=\frac{9}{32}b to find the corresponding solution for a that satisfies both equations.
a=\frac{9\times \frac{160\sqrt{1105}}{221}}{32}
Multiply \frac{9}{32} times \frac{160\sqrt{1105}}{221}.
a=\frac{9}{32}\left(-\frac{160\sqrt{1105}}{221}\right)
Now substitute -\frac{160\sqrt{1105}}{221} for b in the equation a=\frac{9}{32}b and solve to find the corresponding solution for a that satisfies both equations.
a=\frac{9\left(-\frac{160\sqrt{1105}}{221}\right)}{32}
Multiply \frac{9}{32} times -\frac{160\sqrt{1105}}{221}.
a=\frac{9\times \frac{160\sqrt{1105}}{221}}{32},b=\frac{160\sqrt{1105}}{221}\text{ or }a=\frac{9\left(-\frac{160\sqrt{1105}}{221}\right)}{32},b=-\frac{160\sqrt{1105}}{221}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}