\left\{ \begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 100 } \\ { a + b = 20 } \end{array} \right.
Solve for a, b
a=10+5\sqrt{2}i\approx 10+7.071067812i\text{, }b=-5\sqrt{2}i+10\approx 10-7.071067812i
a=-5\sqrt{2}i+10\approx 10-7.071067812i\text{, }b=10+5\sqrt{2}i\approx 10+7.071067812i
Share
Copied to clipboard
a+b=20
Solve a+b=20 for a by isolating a on the left hand side of the equal sign.
a=-b+20
Subtract b from both sides of the equation.
b^{2}+\left(-b+20\right)^{2}=100
Substitute -b+20 for a in the other equation, b^{2}+a^{2}=100.
b^{2}+b^{2}-40b+400=100
Square -b+20.
2b^{2}-40b+400=100
Add b^{2} to b^{2}.
2b^{2}-40b+300=0
Subtract 100 from both sides of the equation.
b=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 2\times 300}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 20\left(-1\right)\times 2 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-40\right)±\sqrt{1600-4\times 2\times 300}}{2\times 2}
Square 1\times 20\left(-1\right)\times 2.
b=\frac{-\left(-40\right)±\sqrt{1600-8\times 300}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
b=\frac{-\left(-40\right)±\sqrt{1600-2400}}{2\times 2}
Multiply -8 times 300.
b=\frac{-\left(-40\right)±\sqrt{-800}}{2\times 2}
Add 1600 to -2400.
b=\frac{-\left(-40\right)±20\sqrt{2}i}{2\times 2}
Take the square root of -800.
b=\frac{40±20\sqrt{2}i}{2\times 2}
The opposite of 1\times 20\left(-1\right)\times 2 is 40.
b=\frac{40±20\sqrt{2}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
b=\frac{40+20\sqrt{2}i}{4}
Now solve the equation b=\frac{40±20\sqrt{2}i}{4} when ± is plus. Add 40 to 20i\sqrt{2}.
b=10+5\sqrt{2}i
Divide 40+20i\sqrt{2} by 4.
b=\frac{-20\sqrt{2}i+40}{4}
Now solve the equation b=\frac{40±20\sqrt{2}i}{4} when ± is minus. Subtract 20i\sqrt{2} from 40.
b=-5\sqrt{2}i+10
Divide 40-20i\sqrt{2} by 4.
a=-\left(10+5\sqrt{2}i\right)+20
There are two solutions for b: 10+5i\sqrt{2} and 10-5i\sqrt{2}. Substitute 10+5i\sqrt{2} for b in the equation a=-b+20 to find the corresponding solution for a that satisfies both equations.
a=-\left(-5\sqrt{2}i+10\right)+20
Now substitute 10-5i\sqrt{2} for b in the equation a=-b+20 and solve to find the corresponding solution for a that satisfies both equations.
a=-\left(10+5\sqrt{2}i\right)+20,b=10+5\sqrt{2}i\text{ or }a=-\left(-5\sqrt{2}i+10\right)+20,b=-5\sqrt{2}i+10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}