Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=a
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x^{2}+y^{2}=9
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=a
Solve x+y=a for x by isolating x on the left hand side of the equal sign.
x=-y+a
Subtract y from both sides of the equation.
y^{2}+\left(-y+a\right)^{2}=9
Substitute -y+a for x in the other equation, y^{2}+x^{2}=9.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
Square -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=9
Add y^{2} to y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-9=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2a for b, and a^{2}-9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Square 1\left(-1\right)\times 2a.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Multiply -8 times a^{2}-9.
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
Add 4a^{2} to -8a^{2}+72.
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
Take the square root of -4a^{2}+72.
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is plus. Add 2a to 2\sqrt{-a^{2}+18}.
y=\frac{\sqrt{18-a^{2}}+a}{2}
Divide 2a+2\sqrt{-a^{2}+18} by 4.
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is minus. Subtract 2\sqrt{-a^{2}+18} from 2a.
y=\frac{-\sqrt{18-a^{2}}+a}{2}
Divide 2a-2\sqrt{-a^{2}+18} by 4.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
There are two solutions for y: \frac{a+\sqrt{-a^{2}+18}}{2} and \frac{a-\sqrt{-a^{2}+18}}{2}. Substitute \frac{a+\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
Now substitute \frac{a-\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
The system is now solved.
x+y=a
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x^{2}+y^{2}=9
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=a,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=a
Solve x+y=a for x by isolating x on the left hand side of the equal sign.
x=-y+a
Subtract y from both sides of the equation.
y^{2}+\left(-y+a\right)^{2}=9
Substitute -y+a for x in the other equation, y^{2}+x^{2}=9.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
Square -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=9
Add y^{2} to y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-9=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2a for b, and a^{2}-9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Square 1\left(-1\right)\times 2a.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Multiply -8 times a^{2}-9.
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
Add 4a^{2} to -8a^{2}+72.
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
Take the square root of -4a^{2}+72.
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is plus. Add 2a to 2\sqrt{-a^{2}+18}.
y=\frac{\sqrt{18-a^{2}}+a}{2}
Divide 2a+2\sqrt{-a^{2}+18} by 4.
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is minus. Subtract 2\sqrt{-a^{2}+18} from 2a.
y=\frac{-\sqrt{18-a^{2}}+a}{2}
Divide 2a-2\sqrt{-a^{2}+18} by 4.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
There are two solutions for y: \frac{a+\sqrt{-a^{2}+18}}{2} and \frac{a-\sqrt{-a^{2}+18}}{2}. Substitute \frac{a+\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
Now substitute \frac{a-\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
The system is now solved.