\left\{ \begin{array} { l } { a = x + y } \\ { 9 = x ^ { 2 } + y ^ { 2 } } \end{array} \right.
Solve for x, y (complex solution)
x=\frac{\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{-\sqrt{18-a^{2}}+a}{2}
x=\frac{-\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{\sqrt{18-a^{2}}+a}{2}
Solve for x, y
x=\frac{\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{-\sqrt{18-a^{2}}+a}{2}
x=\frac{-\sqrt{18-a^{2}}+a}{2}\text{, }y=\frac{\sqrt{18-a^{2}}+a}{2}\text{, }|a|\leq 3\sqrt{2}
Graph
Share
Copied to clipboard
x+y=a
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x^{2}+y^{2}=9
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=a
Solve x+y=a for x by isolating x on the left hand side of the equal sign.
x=-y+a
Subtract y from both sides of the equation.
y^{2}+\left(-y+a\right)^{2}=9
Substitute -y+a for x in the other equation, y^{2}+x^{2}=9.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
Square -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=9
Add y^{2} to y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-9=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2a for b, and a^{2}-9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Square 1\left(-1\right)\times 2a.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Multiply -8 times a^{2}-9.
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
Add 4a^{2} to -8a^{2}+72.
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
Take the square root of -4a^{2}+72.
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is plus. Add 2a to 2\sqrt{-a^{2}+18}.
y=\frac{\sqrt{18-a^{2}}+a}{2}
Divide 2a+2\sqrt{-a^{2}+18} by 4.
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is minus. Subtract 2\sqrt{-a^{2}+18} from 2a.
y=\frac{-\sqrt{18-a^{2}}+a}{2}
Divide 2a-2\sqrt{-a^{2}+18} by 4.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
There are two solutions for y: \frac{a+\sqrt{-a^{2}+18}}{2} and \frac{a-\sqrt{-a^{2}+18}}{2}. Substitute \frac{a+\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
Now substitute \frac{a-\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
The system is now solved.
x+y=a
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x^{2}+y^{2}=9
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=a,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=a
Solve x+y=a for x by isolating x on the left hand side of the equal sign.
x=-y+a
Subtract y from both sides of the equation.
y^{2}+\left(-y+a\right)^{2}=9
Substitute -y+a for x in the other equation, y^{2}+x^{2}=9.
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
Square -y+a.
2y^{2}+\left(-2a\right)y+a^{2}=9
Add y^{2} to y^{2}.
2y^{2}+\left(-2a\right)y+a^{2}-9=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2a for b, and a^{2}-9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Square 1\left(-1\right)\times 2a.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Multiply -8 times a^{2}-9.
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
Add 4a^{2} to -8a^{2}+72.
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
Take the square root of -4a^{2}+72.
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is plus. Add 2a to 2\sqrt{-a^{2}+18}.
y=\frac{\sqrt{18-a^{2}}+a}{2}
Divide 2a+2\sqrt{-a^{2}+18} by 4.
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
Now solve the equation y=\frac{2a±2\sqrt{18-a^{2}}}{4} when ± is minus. Subtract 2\sqrt{-a^{2}+18} from 2a.
y=\frac{-\sqrt{18-a^{2}}+a}{2}
Divide 2a-2\sqrt{-a^{2}+18} by 4.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
There are two solutions for y: \frac{a+\sqrt{-a^{2}+18}}{2} and \frac{a-\sqrt{-a^{2}+18}}{2}. Substitute \frac{a+\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
Now substitute \frac{a-\sqrt{-a^{2}+18}}{2} for y in the equation x=-y+a and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}