\left\{ \begin{array} { l } { a = a + b + 2 } \\ { 0 = 16 a + 4 b + 2 } \end{array} \right.
Solve for a, b
a=\frac{3}{8}=0.375
b=-2
Share
Copied to clipboard
a-a=b+2
Consider the first equation. Subtract a from both sides.
0=b+2
Combine a and -a to get 0.
b+2=0
Swap sides so that all variable terms are on the left hand side.
b=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
0=16a+4\left(-2\right)+2
Consider the second equation. Insert the known values of variables into the equation.
0=16a-8+2
Multiply 4 and -2 to get -8.
0=16a-6
Add -8 and 2 to get -6.
16a-6=0
Swap sides so that all variable terms are on the left hand side.
16a=6
Add 6 to both sides. Anything plus zero gives itself.
a=\frac{6}{16}
Divide both sides by 16.
a=\frac{3}{8}
Reduce the fraction \frac{6}{16} to lowest terms by extracting and canceling out 2.
a=\frac{3}{8} b=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}