\left\{ \begin{array} { l } { a + b = 7 } \\ { a ^ { 2 } + b ^ { 2 } = 25 } \end{array} \right.
Solve for a, b
a=4\text{, }b=3
a=3\text{, }b=4
Share
Copied to clipboard
a+b=7,b^{2}+a^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+b=7
Solve a+b=7 for a by isolating a on the left hand side of the equal sign.
a=-b+7
Subtract b from both sides of the equation.
b^{2}+\left(-b+7\right)^{2}=25
Substitute -b+7 for a in the other equation, b^{2}+a^{2}=25.
b^{2}+b^{2}-14b+49=25
Square -b+7.
2b^{2}-14b+49=25
Add b^{2} to b^{2}.
2b^{2}-14b+24=0
Subtract 25 from both sides of the equation.
b=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\times 24}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 7\left(-1\right)\times 2 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-14\right)±\sqrt{196-4\times 2\times 24}}{2\times 2}
Square 1\times 7\left(-1\right)\times 2.
b=\frac{-\left(-14\right)±\sqrt{196-8\times 24}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
b=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 2}
Multiply -8 times 24.
b=\frac{-\left(-14\right)±\sqrt{4}}{2\times 2}
Add 196 to -192.
b=\frac{-\left(-14\right)±2}{2\times 2}
Take the square root of 4.
b=\frac{14±2}{2\times 2}
The opposite of 1\times 7\left(-1\right)\times 2 is 14.
b=\frac{14±2}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
b=\frac{16}{4}
Now solve the equation b=\frac{14±2}{4} when ± is plus. Add 14 to 2.
b=4
Divide 16 by 4.
b=\frac{12}{4}
Now solve the equation b=\frac{14±2}{4} when ± is minus. Subtract 2 from 14.
b=3
Divide 12 by 4.
a=-4+7
There are two solutions for b: 4 and 3. Substitute 4 for b in the equation a=-b+7 to find the corresponding solution for a that satisfies both equations.
a=3
Add -4 to 7.
a=-3+7
Now substitute 3 for b in the equation a=-b+7 and solve to find the corresponding solution for a that satisfies both equations.
a=4
Add -3 to 7.
a=3,b=4\text{ or }a=4,b=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}