\left\{ \begin{array} { l } { a + b = 5 } \\ { 2 \times 572 \times a + 890 \times b = 3695 } \end{array} \right.
Solve for a, b
a = -\frac{755}{254} = -2\frac{247}{254} \approx -2.972440945
b = \frac{2025}{254} = 7\frac{247}{254} \approx 7.972440945
Share
Copied to clipboard
a+b=5,1144a+890b=3695
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+b=5
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=-b+5
Subtract b from both sides of the equation.
1144\left(-b+5\right)+890b=3695
Substitute -b+5 for a in the other equation, 1144a+890b=3695.
-1144b+5720+890b=3695
Multiply 1144 times -b+5.
-254b+5720=3695
Add -1144b to 890b.
-254b=-2025
Subtract 5720 from both sides of the equation.
b=\frac{2025}{254}
Divide both sides by -254.
a=-\frac{2025}{254}+5
Substitute \frac{2025}{254} for b in a=-b+5. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{755}{254}
Add 5 to -\frac{2025}{254}.
a=-\frac{755}{254},b=\frac{2025}{254}
The system is now solved.
a+b=5,1144a+890b=3695
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1144&890\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\3695\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1144&890\end{matrix}\right))\left(\begin{matrix}1&1\\1144&890\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1144&890\end{matrix}\right))\left(\begin{matrix}5\\3695\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1144&890\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1144&890\end{matrix}\right))\left(\begin{matrix}5\\3695\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1144&890\end{matrix}\right))\left(\begin{matrix}5\\3695\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{890}{890-1144}&-\frac{1}{890-1144}\\-\frac{1144}{890-1144}&\frac{1}{890-1144}\end{matrix}\right)\left(\begin{matrix}5\\3695\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{445}{127}&\frac{1}{254}\\\frac{572}{127}&-\frac{1}{254}\end{matrix}\right)\left(\begin{matrix}5\\3695\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{445}{127}\times 5+\frac{1}{254}\times 3695\\\frac{572}{127}\times 5-\frac{1}{254}\times 3695\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{755}{254}\\\frac{2025}{254}\end{matrix}\right)
Do the arithmetic.
a=-\frac{755}{254},b=\frac{2025}{254}
Extract the matrix elements a and b.
a+b=5,1144a+890b=3695
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1144a+1144b=1144\times 5,1144a+890b=3695
To make a and 1144a equal, multiply all terms on each side of the first equation by 1144 and all terms on each side of the second by 1.
1144a+1144b=5720,1144a+890b=3695
Simplify.
1144a-1144a+1144b-890b=5720-3695
Subtract 1144a+890b=3695 from 1144a+1144b=5720 by subtracting like terms on each side of the equal sign.
1144b-890b=5720-3695
Add 1144a to -1144a. Terms 1144a and -1144a cancel out, leaving an equation with only one variable that can be solved.
254b=5720-3695
Add 1144b to -890b.
254b=2025
Add 5720 to -3695.
b=\frac{2025}{254}
Divide both sides by 254.
1144a+890\times \frac{2025}{254}=3695
Substitute \frac{2025}{254} for b in 1144a+890b=3695. Because the resulting equation contains only one variable, you can solve for a directly.
1144a+\frac{901125}{127}=3695
Multiply 890 times \frac{2025}{254}.
1144a=-\frac{431860}{127}
Subtract \frac{901125}{127} from both sides of the equation.
a=-\frac{755}{254}
Divide both sides by 1144.
a=-\frac{755}{254},b=\frac{2025}{254}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}