\left\{ \begin{array} { l } { W = 6.67 \times 10 ^ { - 31 } X } \\ { W = \frac { 4.7 } { 1.6 \times 10 ^ { - 19 } } } \end{array} \right.
Solve for W, X
W=29375000000000000000
X=\frac{29375000000000000000000000000000000000000000000000000}{667}\approx 4.404047976 \cdot 10^{49}
Share
Copied to clipboard
W=\frac{4.7}{1.6\times \left(\frac{1}{10000000000000000000}\right)}
Consider the second equation. Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
W=6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)X
Consider the first equation. Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
W-6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)X=0
Subtract 6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)X from both sides.
-X\left(6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)\right)+W=0
Reorder the terms.
W=\frac{4.7}{1.6\times \left(\frac{1}{10000000000000000000}\right)},W+\left(-6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)\right)X=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
W=\frac{4.7}{1.6\times \left(\frac{1}{10000000000000000000}\right)}
Pick one of the two equations which is more simple to solve for W by isolating W on the left hand side of the equal sign.
W=29375000000000000000
Divide both sides by 1.
29375000000000000000+\left(-6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)\right)X=0
Substitute 29375000000000000000 for W in the other equation, W+\left(-6.67\times \left(\frac{1}{10000000000000000000000000000000}\right)\right)X=0.
-\frac{667}{1000000000000000000000000000000000}X=-29375000000000000000
Subtract 29375000000000000000 from both sides of the equation.
X=\frac{29375000000000000000000000000000000000000000000000000}{667}
Divide both sides of the equation by -\frac{667}{1000000000000000000000000000000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
W=29375000000000000000,X=\frac{29375000000000000000000000000000000000000000000000000}{667}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}