\left\{ \begin{array} { l } { R ( \sin 2 \beta - \cos 2 \beta ) = \frac { 7 } { 2 } } \\ { R ( - 1 + \cos 2 \beta + \sin 2 \beta ) = 2 } \end{array} \right.
Solve for R, β (complex solution)
R=\frac{13}{2}=6.5\text{, }\beta =\frac{2\pi n_{1}+\arctan(\frac{12}{5})}{2}\text{, }n_{1}\in \mathrm{Z}
R=-\frac{5}{2}=-2.5\text{, }\beta =\frac{2\pi n_{2}+2\pi -\arctan(\frac{3}{4})}{2}\text{, }n_{2}\in \mathrm{Z}
Solve for R, β
\left\{\begin{matrix}R=\frac{13}{2}=6.5\text{, }\beta \in \cup n_{2},\frac{2\pi n_{2}+\arcsin(\frac{12}{13})}{2}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }2\pi n_{2}+\arcsin(\frac{12}{13})=\frac{\pi \left(4n_{1}+1\right)}{4}\text{, }n_{2}\in \mathrm{Z}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(\nexists n_{1}\in \mathrm{Z}\text{ : }2\pi n_{2}+\arcsin(\frac{12}{13})=\frac{\pi \left(4n_{1}+1\right)}{4}\right)\right)\\R=-\frac{5}{2}=-2.5\text{, }\beta \in \cup n_{3},\frac{2\pi n_{3}+2\pi -\arcsin(\frac{3}{5})}{2}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }2\pi n_{3}+2\pi -\arcsin(\frac{3}{5})=\frac{\pi \left(4n_{1}+1\right)}{4}\text{, }n_{3}\in \mathrm{Z}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(\exists n_{3}\in \mathrm{Z}\text{ : }\left(\nexists n_{1}\in \mathrm{Z}\text{ : }2\pi n_{3}+2\pi -\arcsin(\frac{3}{5})=\frac{\pi \left(4n_{1}+1\right)}{4}\right)\right)\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}