\left\{ \begin{array} { l } { A _ { 1 } x + B , y + c _ { 1 } z + D _ { 1 } } \\ { \Delta _ { 2 } x + B _ { 2 } y + C _ { 2 } z + D _ { 2 } } \end{array} \right.
Least Common Multiple
\left(A_{1}x+B\right)\left(y+c_{1}z+D_{1}\right)\left(x\Delta _{2}+B_{2}y+C_{2}z+D_{2}\right)
Evaluate
A_{1}x+B,\ y+c_{1}z+D_{1},\ x\Delta _{2}+B_{2}y+C_{2}z+D_{2}
Share
Copied to clipboard
\left(A_{1}x+B\right)\left(y+c_{1}z+D_{1}\right)\left(x\Delta _{2}+B_{2}y+C_{2}z+D_{2}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
A_{1}D_{1}\Delta _{2}x^{2}+A_{1}B_{2}xy^{2}+A_{1}B_{2}c_{1}xyz+A_{1}B_{2}D_{1}xy+A_{1}C_{2}xyz+A_{1}D_{1}D_{2}x+A_{1}D_{2}xy+Bxy\Delta _{2}+A_{1}C_{2}c_{1}xz^{2}+A_{1}C_{2}D_{1}xz+A_{1}D_{2}c_{1}xz+Bc_{1}xz\Delta _{2}+BD_{1}x\Delta _{2}+BB_{2}y^{2}+A_{1}y\Delta _{2}x^{2}+BB_{2}c_{1}yz+BB_{2}D_{1}y+BC_{2}yz+BD_{2}y+BC_{2}c_{1}z^{2}+A_{1}c_{1}z\Delta _{2}x^{2}+BC_{2}D_{1}z+BD_{2}c_{1}z+BD_{1}D_{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}