\left\{ \begin{array} { l } { 987 x + 123 y = 741 } \\ { 321 x - 123 y = 667 } \end{array} \right.
Solve for x, y
x = \frac{352}{327} = 1\frac{25}{327} \approx 1.076452599
y = -\frac{35039}{13407} = -2\frac{8225}{13407} \approx -2.613485493
Graph
Share
Copied to clipboard
987x+123y=741,321x-123y=667
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
987x+123y=741
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
987x=-123y+741
Subtract 123y from both sides of the equation.
x=\frac{1}{987}\left(-123y+741\right)
Divide both sides by 987.
x=-\frac{41}{329}y+\frac{247}{329}
Multiply \frac{1}{987} times -123y+741.
321\left(-\frac{41}{329}y+\frac{247}{329}\right)-123y=667
Substitute \frac{-41y+247}{329} for x in the other equation, 321x-123y=667.
-\frac{13161}{329}y+\frac{79287}{329}-123y=667
Multiply 321 times \frac{-41y+247}{329}.
-\frac{53628}{329}y+\frac{79287}{329}=667
Add -\frac{13161y}{329} to -123y.
-\frac{53628}{329}y=\frac{140156}{329}
Subtract \frac{79287}{329} from both sides of the equation.
y=-\frac{35039}{13407}
Divide both sides of the equation by -\frac{53628}{329}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{41}{329}\left(-\frac{35039}{13407}\right)+\frac{247}{329}
Substitute -\frac{35039}{13407} for y in x=-\frac{41}{329}y+\frac{247}{329}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{35039}{107583}+\frac{247}{329}
Multiply -\frac{41}{329} times -\frac{35039}{13407} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{352}{327}
Add \frac{247}{329} to \frac{35039}{107583} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{352}{327},y=-\frac{35039}{13407}
The system is now solved.
987x+123y=741,321x-123y=667
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}987&123\\321&-123\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}741\\667\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}987&123\\321&-123\end{matrix}\right))\left(\begin{matrix}987&123\\321&-123\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}987&123\\321&-123\end{matrix}\right))\left(\begin{matrix}741\\667\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}987&123\\321&-123\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}987&123\\321&-123\end{matrix}\right))\left(\begin{matrix}741\\667\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}987&123\\321&-123\end{matrix}\right))\left(\begin{matrix}741\\667\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{123}{987\left(-123\right)-123\times 321}&-\frac{123}{987\left(-123\right)-123\times 321}\\-\frac{321}{987\left(-123\right)-123\times 321}&\frac{987}{987\left(-123\right)-123\times 321}\end{matrix}\right)\left(\begin{matrix}741\\667\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1308}&\frac{1}{1308}\\\frac{107}{53628}&-\frac{329}{53628}\end{matrix}\right)\left(\begin{matrix}741\\667\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1308}\times 741+\frac{1}{1308}\times 667\\\frac{107}{53628}\times 741-\frac{329}{53628}\times 667\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{352}{327}\\-\frac{35039}{13407}\end{matrix}\right)
Do the arithmetic.
x=\frac{352}{327},y=-\frac{35039}{13407}
Extract the matrix elements x and y.
987x+123y=741,321x-123y=667
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
321\times 987x+321\times 123y=321\times 741,987\times 321x+987\left(-123\right)y=987\times 667
To make 987x and 321x equal, multiply all terms on each side of the first equation by 321 and all terms on each side of the second by 987.
316827x+39483y=237861,316827x-121401y=658329
Simplify.
316827x-316827x+39483y+121401y=237861-658329
Subtract 316827x-121401y=658329 from 316827x+39483y=237861 by subtracting like terms on each side of the equal sign.
39483y+121401y=237861-658329
Add 316827x to -316827x. Terms 316827x and -316827x cancel out, leaving an equation with only one variable that can be solved.
160884y=237861-658329
Add 39483y to 121401y.
160884y=-420468
Add 237861 to -658329.
y=-\frac{35039}{13407}
Divide both sides by 160884.
321x-123\left(-\frac{35039}{13407}\right)=667
Substitute -\frac{35039}{13407} for y in 321x-123y=667. Because the resulting equation contains only one variable, you can solve for x directly.
321x+\frac{35039}{109}=667
Multiply -123 times -\frac{35039}{13407}.
321x=\frac{37664}{109}
Subtract \frac{35039}{109} from both sides of the equation.
x=\frac{352}{327}
Divide both sides by 321.
x=\frac{352}{327},y=-\frac{35039}{13407}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}