\left\{ \begin{array} { l } { 9 x ^ { 2 } - 25 y ^ { 2 } = 225 } \\ { y + x + 4 = 0 } \end{array} \right.
Solve for x, y
x = -\frac{25}{4} = -6\frac{1}{4} = -6.25
y = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
y+x+4=0,9x^{2}-25y^{2}=225
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+x+4=0
Solve y+x+4=0 for y by isolating y on the left hand side of the equal sign.
y+x=-4
Subtract 4 from both sides of the equation.
y=-x-4
Subtract x from both sides of the equation.
9x^{2}-25\left(-x-4\right)^{2}=225
Substitute -x-4 for y in the other equation, 9x^{2}-25y^{2}=225.
9x^{2}-25\left(x^{2}+8x+16\right)=225
Square -x-4.
9x^{2}-25x^{2}-200x-400=225
Multiply -25 times x^{2}+8x+16.
-16x^{2}-200x-400=225
Add 9x^{2} to -25x^{2}.
-16x^{2}-200x-625=0
Subtract 225 from both sides of the equation.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-16\right)\left(-625\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9-25\left(-1\right)^{2} for a, -25\left(-4\right)\left(-1\right)\times 2 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-16\right)\left(-625\right)}}{2\left(-16\right)}
Square -25\left(-4\right)\left(-1\right)\times 2.
x=\frac{-\left(-200\right)±\sqrt{40000+64\left(-625\right)}}{2\left(-16\right)}
Multiply -4 times 9-25\left(-1\right)^{2}.
x=\frac{-\left(-200\right)±\sqrt{40000-40000}}{2\left(-16\right)}
Multiply 64 times -625.
x=\frac{-\left(-200\right)±\sqrt{0}}{2\left(-16\right)}
Add 40000 to -40000.
x=-\frac{-200}{2\left(-16\right)}
Take the square root of 0.
x=\frac{200}{2\left(-16\right)}
The opposite of -25\left(-4\right)\left(-1\right)\times 2 is 200.
x=\frac{200}{-32}
Multiply 2 times 9-25\left(-1\right)^{2}.
x=-\frac{25}{4}
Reduce the fraction \frac{200}{-32} to lowest terms by extracting and canceling out 8.
y=-\left(-\frac{25}{4}\right)-4
There are two solutions for x: -\frac{25}{4} and -\frac{25}{4}. Substitute -\frac{25}{4} for x in the equation y=-x-4 to find the corresponding solution for y that satisfies both equations.
y=\frac{25}{4}-4
Multiply -1 times -\frac{25}{4}.
y=\frac{9}{4}
Add -\frac{25}{4}\left(-1\right) to -4.
y=\frac{9}{4},x=-\frac{25}{4}\text{ or }y=\frac{9}{4},x=-\frac{25}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}