\left\{ \begin{array} { l } { 9 x + 10 y = 1810 } \\ { 11 x + 8 y = 1790 } \end{array} \right.
Solve for x, y
x=90
y=100
Graph
Share
Copied to clipboard
9x+10y=1810,11x+8y=1790
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x+10y=1810
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
9x=-10y+1810
Subtract 10y from both sides of the equation.
x=\frac{1}{9}\left(-10y+1810\right)
Divide both sides by 9.
x=-\frac{10}{9}y+\frac{1810}{9}
Multiply \frac{1}{9} times -10y+1810.
11\left(-\frac{10}{9}y+\frac{1810}{9}\right)+8y=1790
Substitute \frac{-10y+1810}{9} for x in the other equation, 11x+8y=1790.
-\frac{110}{9}y+\frac{19910}{9}+8y=1790
Multiply 11 times \frac{-10y+1810}{9}.
-\frac{38}{9}y+\frac{19910}{9}=1790
Add -\frac{110y}{9} to 8y.
-\frac{38}{9}y=-\frac{3800}{9}
Subtract \frac{19910}{9} from both sides of the equation.
y=100
Divide both sides of the equation by -\frac{38}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{10}{9}\times 100+\frac{1810}{9}
Substitute 100 for y in x=-\frac{10}{9}y+\frac{1810}{9}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-1000+1810}{9}
Multiply -\frac{10}{9} times 100.
x=90
Add \frac{1810}{9} to -\frac{1000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=90,y=100
The system is now solved.
9x+10y=1810,11x+8y=1790
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&10\\11&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1810\\1790\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&10\\11&8\end{matrix}\right))\left(\begin{matrix}9&10\\11&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&10\\11&8\end{matrix}\right))\left(\begin{matrix}1810\\1790\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&10\\11&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&10\\11&8\end{matrix}\right))\left(\begin{matrix}1810\\1790\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&10\\11&8\end{matrix}\right))\left(\begin{matrix}1810\\1790\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{9\times 8-10\times 11}&-\frac{10}{9\times 8-10\times 11}\\-\frac{11}{9\times 8-10\times 11}&\frac{9}{9\times 8-10\times 11}\end{matrix}\right)\left(\begin{matrix}1810\\1790\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}&\frac{5}{19}\\\frac{11}{38}&-\frac{9}{38}\end{matrix}\right)\left(\begin{matrix}1810\\1790\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}\times 1810+\frac{5}{19}\times 1790\\\frac{11}{38}\times 1810-\frac{9}{38}\times 1790\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\100\end{matrix}\right)
Do the arithmetic.
x=90,y=100
Extract the matrix elements x and y.
9x+10y=1810,11x+8y=1790
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11\times 9x+11\times 10y=11\times 1810,9\times 11x+9\times 8y=9\times 1790
To make 9x and 11x equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 9.
99x+110y=19910,99x+72y=16110
Simplify.
99x-99x+110y-72y=19910-16110
Subtract 99x+72y=16110 from 99x+110y=19910 by subtracting like terms on each side of the equal sign.
110y-72y=19910-16110
Add 99x to -99x. Terms 99x and -99x cancel out, leaving an equation with only one variable that can be solved.
38y=19910-16110
Add 110y to -72y.
38y=3800
Add 19910 to -16110.
y=100
Divide both sides by 38.
11x+8\times 100=1790
Substitute 100 for y in 11x+8y=1790. Because the resulting equation contains only one variable, you can solve for x directly.
11x+800=1790
Multiply 8 times 100.
11x=990
Subtract 800 from both sides of the equation.
x=90
Divide both sides by 11.
x=90,y=100
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}