\left\{ \begin{array} { l } { 9 s - 13 t + 12 = 6 } \\ { s = 2 - 3 t } \end{array} \right.
Solve for s, t
t=\frac{3}{5}=0.6
s=\frac{1}{5}=0.2
Share
Copied to clipboard
9s-13t=6-12
Consider the first equation. Subtract 12 from both sides.
9s-13t=-6
Subtract 12 from 6 to get -6.
s+3t=2
Consider the second equation. Add 3t to both sides.
9s-13t=-6,s+3t=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9s-13t=-6
Choose one of the equations and solve it for s by isolating s on the left hand side of the equal sign.
9s=13t-6
Add 13t to both sides of the equation.
s=\frac{1}{9}\left(13t-6\right)
Divide both sides by 9.
s=\frac{13}{9}t-\frac{2}{3}
Multiply \frac{1}{9} times 13t-6.
\frac{13}{9}t-\frac{2}{3}+3t=2
Substitute \frac{13t}{9}-\frac{2}{3} for s in the other equation, s+3t=2.
\frac{40}{9}t-\frac{2}{3}=2
Add \frac{13t}{9} to 3t.
\frac{40}{9}t=\frac{8}{3}
Add \frac{2}{3} to both sides of the equation.
t=\frac{3}{5}
Divide both sides of the equation by \frac{40}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
s=\frac{13}{9}\times \frac{3}{5}-\frac{2}{3}
Substitute \frac{3}{5} for t in s=\frac{13}{9}t-\frac{2}{3}. Because the resulting equation contains only one variable, you can solve for s directly.
s=\frac{13}{15}-\frac{2}{3}
Multiply \frac{13}{9} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
s=\frac{1}{5}
Add -\frac{2}{3} to \frac{13}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
s=\frac{1}{5},t=\frac{3}{5}
The system is now solved.
9s-13t=6-12
Consider the first equation. Subtract 12 from both sides.
9s-13t=-6
Subtract 12 from 6 to get -6.
s+3t=2
Consider the second equation. Add 3t to both sides.
9s-13t=-6,s+3t=2
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&-13\\1&3\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&-13\\1&3\end{matrix}\right))\left(\begin{matrix}9&-13\\1&3\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}9&-13\\1&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&-13\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}9&-13\\1&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}9&-13\\1&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{3}{9\times 3-\left(-13\right)}&-\frac{-13}{9\times 3-\left(-13\right)}\\-\frac{1}{9\times 3-\left(-13\right)}&\frac{9}{9\times 3-\left(-13\right)}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{3}{40}&\frac{13}{40}\\-\frac{1}{40}&\frac{9}{40}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{3}{40}\left(-6\right)+\frac{13}{40}\times 2\\-\frac{1}{40}\left(-6\right)+\frac{9}{40}\times 2\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\\\frac{3}{5}\end{matrix}\right)
Do the arithmetic.
s=\frac{1}{5},t=\frac{3}{5}
Extract the matrix elements s and t.
9s-13t=6-12
Consider the first equation. Subtract 12 from both sides.
9s-13t=-6
Subtract 12 from 6 to get -6.
s+3t=2
Consider the second equation. Add 3t to both sides.
9s-13t=-6,s+3t=2
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9s-13t=-6,9s+9\times 3t=9\times 2
To make 9s and s equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 9.
9s-13t=-6,9s+27t=18
Simplify.
9s-9s-13t-27t=-6-18
Subtract 9s+27t=18 from 9s-13t=-6 by subtracting like terms on each side of the equal sign.
-13t-27t=-6-18
Add 9s to -9s. Terms 9s and -9s cancel out, leaving an equation with only one variable that can be solved.
-40t=-6-18
Add -13t to -27t.
-40t=-24
Add -6 to -18.
t=\frac{3}{5}
Divide both sides by -40.
s+3\times \frac{3}{5}=2
Substitute \frac{3}{5} for t in s+3t=2. Because the resulting equation contains only one variable, you can solve for s directly.
s+\frac{9}{5}=2
Multiply 3 times \frac{3}{5}.
s=\frac{1}{5}
Subtract \frac{9}{5} from both sides of the equation.
s=\frac{1}{5},t=\frac{3}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}