\left\{ \begin{array} { l } { 800 = \frac { 340 } { 340 - x } f } \\ { 400 = \frac { 340 } { 340 + x } f } \end{array} \right.
Solve for x, f
x = \frac{340}{3} = 113\frac{1}{3} \approx 113.333333333
f = \frac{1600}{3} = 533\frac{1}{3} \approx 533.333333333
Graph
Share
Copied to clipboard
800\left(-x+340\right)=340f
Consider the first equation. Variable x cannot be equal to 340 since division by zero is not defined. Multiply both sides of the equation by -x+340.
-800x+272000=340f
Use the distributive property to multiply 800 by -x+340.
-800x+272000-340f=0
Subtract 340f from both sides.
-800x-340f=-272000
Subtract 272000 from both sides. Anything subtracted from zero gives its negation.
400\left(x+340\right)=340f
Consider the second equation. Variable x cannot be equal to -340 since division by zero is not defined. Multiply both sides of the equation by x+340.
400x+136000=340f
Use the distributive property to multiply 400 by x+340.
400x+136000-340f=0
Subtract 340f from both sides.
400x-340f=-136000
Subtract 136000 from both sides. Anything subtracted from zero gives its negation.
-800x-340f=-272000,400x-340f=-136000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-800x-340f=-272000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-800x=340f-272000
Add 340f to both sides of the equation.
x=-\frac{1}{800}\left(340f-272000\right)
Divide both sides by -800.
x=-\frac{17}{40}f+340
Multiply -\frac{1}{800} times -272000+340f.
400\left(-\frac{17}{40}f+340\right)-340f=-136000
Substitute -\frac{17f}{40}+340 for x in the other equation, 400x-340f=-136000.
-170f+136000-340f=-136000
Multiply 400 times -\frac{17f}{40}+340.
-510f+136000=-136000
Add -170f to -340f.
-510f=-272000
Subtract 136000 from both sides of the equation.
f=\frac{1600}{3}
Divide both sides by -510.
x=-\frac{17}{40}\times \frac{1600}{3}+340
Substitute \frac{1600}{3} for f in x=-\frac{17}{40}f+340. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{680}{3}+340
Multiply -\frac{17}{40} times \frac{1600}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{340}{3}
Add 340 to -\frac{680}{3}.
x=\frac{340}{3},f=\frac{1600}{3}
The system is now solved.
800\left(-x+340\right)=340f
Consider the first equation. Variable x cannot be equal to 340 since division by zero is not defined. Multiply both sides of the equation by -x+340.
-800x+272000=340f
Use the distributive property to multiply 800 by -x+340.
-800x+272000-340f=0
Subtract 340f from both sides.
-800x-340f=-272000
Subtract 272000 from both sides. Anything subtracted from zero gives its negation.
400\left(x+340\right)=340f
Consider the second equation. Variable x cannot be equal to -340 since division by zero is not defined. Multiply both sides of the equation by x+340.
400x+136000=340f
Use the distributive property to multiply 400 by x+340.
400x+136000-340f=0
Subtract 340f from both sides.
400x-340f=-136000
Subtract 136000 from both sides. Anything subtracted from zero gives its negation.
-800x-340f=-272000,400x-340f=-136000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right)\left(\begin{matrix}x\\f\end{matrix}\right)=\left(\begin{matrix}-272000\\-136000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right))\left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right)\left(\begin{matrix}x\\f\end{matrix}\right)=inverse(\left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right))\left(\begin{matrix}-272000\\-136000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\f\end{matrix}\right)=inverse(\left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right))\left(\begin{matrix}-272000\\-136000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\f\end{matrix}\right)=inverse(\left(\begin{matrix}-800&-340\\400&-340\end{matrix}\right))\left(\begin{matrix}-272000\\-136000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\f\end{matrix}\right)=\left(\begin{matrix}-\frac{340}{-800\left(-340\right)-\left(-340\times 400\right)}&-\frac{-340}{-800\left(-340\right)-\left(-340\times 400\right)}\\-\frac{400}{-800\left(-340\right)-\left(-340\times 400\right)}&-\frac{800}{-800\left(-340\right)-\left(-340\times 400\right)}\end{matrix}\right)\left(\begin{matrix}-272000\\-136000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\f\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{1200}&\frac{1}{1200}\\-\frac{1}{1020}&-\frac{1}{510}\end{matrix}\right)\left(\begin{matrix}-272000\\-136000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\f\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{1200}\left(-272000\right)+\frac{1}{1200}\left(-136000\right)\\-\frac{1}{1020}\left(-272000\right)-\frac{1}{510}\left(-136000\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\f\end{matrix}\right)=\left(\begin{matrix}\frac{340}{3}\\\frac{1600}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{340}{3},f=\frac{1600}{3}
Extract the matrix elements x and f.
800\left(-x+340\right)=340f
Consider the first equation. Variable x cannot be equal to 340 since division by zero is not defined. Multiply both sides of the equation by -x+340.
-800x+272000=340f
Use the distributive property to multiply 800 by -x+340.
-800x+272000-340f=0
Subtract 340f from both sides.
-800x-340f=-272000
Subtract 272000 from both sides. Anything subtracted from zero gives its negation.
400\left(x+340\right)=340f
Consider the second equation. Variable x cannot be equal to -340 since division by zero is not defined. Multiply both sides of the equation by x+340.
400x+136000=340f
Use the distributive property to multiply 400 by x+340.
400x+136000-340f=0
Subtract 340f from both sides.
400x-340f=-136000
Subtract 136000 from both sides. Anything subtracted from zero gives its negation.
-800x-340f=-272000,400x-340f=-136000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-800x-400x-340f+340f=-272000+136000
Subtract 400x-340f=-136000 from -800x-340f=-272000 by subtracting like terms on each side of the equal sign.
-800x-400x=-272000+136000
Add -340f to 340f. Terms -340f and 340f cancel out, leaving an equation with only one variable that can be solved.
-1200x=-272000+136000
Add -800x to -400x.
-1200x=-136000
Add -272000 to 136000.
x=\frac{340}{3}
Divide both sides by -1200.
400\times \frac{340}{3}-340f=-136000
Substitute \frac{340}{3} for x in 400x-340f=-136000. Because the resulting equation contains only one variable, you can solve for f directly.
\frac{136000}{3}-340f=-136000
Multiply 400 times \frac{340}{3}.
-340f=-\frac{544000}{3}
Subtract \frac{136000}{3} from both sides of the equation.
f=\frac{1600}{3}
Divide both sides by -340.
x=\frac{340}{3},f=\frac{1600}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}