\left\{ \begin{array} { l } { 8 x - 5 y = 49 } \\ { 7 x + 15 y = 101 } \end{array} \right.
Solve for x, y
x=8
y=3
Graph
Share
Copied to clipboard
8x-5y=49,7x+15y=101
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x-5y=49
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=5y+49
Add 5y to both sides of the equation.
x=\frac{1}{8}\left(5y+49\right)
Divide both sides by 8.
x=\frac{5}{8}y+\frac{49}{8}
Multiply \frac{1}{8} times 5y+49.
7\left(\frac{5}{8}y+\frac{49}{8}\right)+15y=101
Substitute \frac{5y+49}{8} for x in the other equation, 7x+15y=101.
\frac{35}{8}y+\frac{343}{8}+15y=101
Multiply 7 times \frac{5y+49}{8}.
\frac{155}{8}y+\frac{343}{8}=101
Add \frac{35y}{8} to 15y.
\frac{155}{8}y=\frac{465}{8}
Subtract \frac{343}{8} from both sides of the equation.
y=3
Divide both sides of the equation by \frac{155}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{5}{8}\times 3+\frac{49}{8}
Substitute 3 for y in x=\frac{5}{8}y+\frac{49}{8}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{15+49}{8}
Multiply \frac{5}{8} times 3.
x=8
Add \frac{49}{8} to \frac{15}{8} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=8,y=3
The system is now solved.
8x-5y=49,7x+15y=101
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&-5\\7&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}49\\101\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&-5\\7&15\end{matrix}\right))\left(\begin{matrix}8&-5\\7&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\7&15\end{matrix}\right))\left(\begin{matrix}49\\101\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&-5\\7&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\7&15\end{matrix}\right))\left(\begin{matrix}49\\101\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\7&15\end{matrix}\right))\left(\begin{matrix}49\\101\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{8\times 15-\left(-5\times 7\right)}&-\frac{-5}{8\times 15-\left(-5\times 7\right)}\\-\frac{7}{8\times 15-\left(-5\times 7\right)}&\frac{8}{8\times 15-\left(-5\times 7\right)}\end{matrix}\right)\left(\begin{matrix}49\\101\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{31}&\frac{1}{31}\\-\frac{7}{155}&\frac{8}{155}\end{matrix}\right)\left(\begin{matrix}49\\101\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{31}\times 49+\frac{1}{31}\times 101\\-\frac{7}{155}\times 49+\frac{8}{155}\times 101\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
Do the arithmetic.
x=8,y=3
Extract the matrix elements x and y.
8x-5y=49,7x+15y=101
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 8x+7\left(-5\right)y=7\times 49,8\times 7x+8\times 15y=8\times 101
To make 8x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 8.
56x-35y=343,56x+120y=808
Simplify.
56x-56x-35y-120y=343-808
Subtract 56x+120y=808 from 56x-35y=343 by subtracting like terms on each side of the equal sign.
-35y-120y=343-808
Add 56x to -56x. Terms 56x and -56x cancel out, leaving an equation with only one variable that can be solved.
-155y=343-808
Add -35y to -120y.
-155y=-465
Add 343 to -808.
y=3
Divide both sides by -155.
7x+15\times 3=101
Substitute 3 for y in 7x+15y=101. Because the resulting equation contains only one variable, you can solve for x directly.
7x+45=101
Multiply 15 times 3.
7x=56
Subtract 45 from both sides of the equation.
x=8
Divide both sides by 7.
x=8,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}