\left\{ \begin{array} { l } { 8 x + 9 y = 7 } \\ { 17 x - 3 y = 74 } \end{array} \right.
Solve for x, y
x = \frac{229}{59} = 3\frac{52}{59} \approx 3.881355932
y = -\frac{473}{177} = -2\frac{119}{177} \approx -2.672316384
Graph
Share
Copied to clipboard
8x+9y=7,17x-3y=74
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+9y=7
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-9y+7
Subtract 9y from both sides of the equation.
x=\frac{1}{8}\left(-9y+7\right)
Divide both sides by 8.
x=-\frac{9}{8}y+\frac{7}{8}
Multiply \frac{1}{8} times -9y+7.
17\left(-\frac{9}{8}y+\frac{7}{8}\right)-3y=74
Substitute \frac{-9y+7}{8} for x in the other equation, 17x-3y=74.
-\frac{153}{8}y+\frac{119}{8}-3y=74
Multiply 17 times \frac{-9y+7}{8}.
-\frac{177}{8}y+\frac{119}{8}=74
Add -\frac{153y}{8} to -3y.
-\frac{177}{8}y=\frac{473}{8}
Subtract \frac{119}{8} from both sides of the equation.
y=-\frac{473}{177}
Divide both sides of the equation by -\frac{177}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{9}{8}\left(-\frac{473}{177}\right)+\frac{7}{8}
Substitute -\frac{473}{177} for y in x=-\frac{9}{8}y+\frac{7}{8}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1419}{472}+\frac{7}{8}
Multiply -\frac{9}{8} times -\frac{473}{177} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{229}{59}
Add \frac{7}{8} to \frac{1419}{472} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{229}{59},y=-\frac{473}{177}
The system is now solved.
8x+9y=7,17x-3y=74
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&9\\17&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\74\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&9\\17&-3\end{matrix}\right))\left(\begin{matrix}8&9\\17&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&9\\17&-3\end{matrix}\right))\left(\begin{matrix}7\\74\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&9\\17&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&9\\17&-3\end{matrix}\right))\left(\begin{matrix}7\\74\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&9\\17&-3\end{matrix}\right))\left(\begin{matrix}7\\74\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8\left(-3\right)-9\times 17}&-\frac{9}{8\left(-3\right)-9\times 17}\\-\frac{17}{8\left(-3\right)-9\times 17}&\frac{8}{8\left(-3\right)-9\times 17}\end{matrix}\right)\left(\begin{matrix}7\\74\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{59}&\frac{3}{59}\\\frac{17}{177}&-\frac{8}{177}\end{matrix}\right)\left(\begin{matrix}7\\74\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{59}\times 7+\frac{3}{59}\times 74\\\frac{17}{177}\times 7-\frac{8}{177}\times 74\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{229}{59}\\-\frac{473}{177}\end{matrix}\right)
Do the arithmetic.
x=\frac{229}{59},y=-\frac{473}{177}
Extract the matrix elements x and y.
8x+9y=7,17x-3y=74
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
17\times 8x+17\times 9y=17\times 7,8\times 17x+8\left(-3\right)y=8\times 74
To make 8x and 17x equal, multiply all terms on each side of the first equation by 17 and all terms on each side of the second by 8.
136x+153y=119,136x-24y=592
Simplify.
136x-136x+153y+24y=119-592
Subtract 136x-24y=592 from 136x+153y=119 by subtracting like terms on each side of the equal sign.
153y+24y=119-592
Add 136x to -136x. Terms 136x and -136x cancel out, leaving an equation with only one variable that can be solved.
177y=119-592
Add 153y to 24y.
177y=-473
Add 119 to -592.
y=-\frac{473}{177}
Divide both sides by 177.
17x-3\left(-\frac{473}{177}\right)=74
Substitute -\frac{473}{177} for y in 17x-3y=74. Because the resulting equation contains only one variable, you can solve for x directly.
17x+\frac{473}{59}=74
Multiply -3 times -\frac{473}{177}.
17x=\frac{3893}{59}
Subtract \frac{473}{59} from both sides of the equation.
x=\frac{229}{59}
Divide both sides by 17.
x=\frac{229}{59},y=-\frac{473}{177}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}