\left\{ \begin{array} { l } { 8 x + 8 y + 6 z = 52 } \\ { 6 x + 7 y + 2 = 16 } \\ { 3 x + 9 y + 22 = 5 } \end{array} \right.
Solve for x, y, z
x = \frac{245}{33} = 7\frac{14}{33} \approx 7.424242424
y = -\frac{48}{11} = -4\frac{4}{11} \approx -4.363636364
z = \frac{454}{99} = 4\frac{58}{99} \approx 4.585858586
Share
Copied to clipboard
x=\frac{13}{2}-y-\frac{3}{4}z
Solve 8x+8y+6z=52 for x.
6\left(\frac{13}{2}-y-\frac{3}{4}z\right)+7y+2=16 3\left(\frac{13}{2}-y-\frac{3}{4}z\right)+9y+22=5
Substitute \frac{13}{2}-y-\frac{3}{4}z for x in the second and third equation.
y=-25+\frac{9}{2}z z=\frac{146}{9}+\frac{8}{3}y
Solve these equations for y and z respectively.
z=\frac{146}{9}+\frac{8}{3}\left(-25+\frac{9}{2}z\right)
Substitute -25+\frac{9}{2}z for y in the equation z=\frac{146}{9}+\frac{8}{3}y.
z=\frac{454}{99}
Solve z=\frac{146}{9}+\frac{8}{3}\left(-25+\frac{9}{2}z\right) for z.
y=-25+\frac{9}{2}\times \frac{454}{99}
Substitute \frac{454}{99} for z in the equation y=-25+\frac{9}{2}z.
y=-\frac{48}{11}
Calculate y from y=-25+\frac{9}{2}\times \frac{454}{99}.
x=\frac{13}{2}-\left(-\frac{48}{11}\right)-\frac{3}{4}\times \frac{454}{99}
Substitute -\frac{48}{11} for y and \frac{454}{99} for z in the equation x=\frac{13}{2}-y-\frac{3}{4}z.
x=\frac{245}{33}
Calculate x from x=\frac{13}{2}-\left(-\frac{48}{11}\right)-\frac{3}{4}\times \frac{454}{99}.
x=\frac{245}{33} y=-\frac{48}{11} z=\frac{454}{99}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}