Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x+5y=186,4x+7y=174
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+5y=186
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-5y+186
Subtract 5y from both sides of the equation.
x=\frac{1}{8}\left(-5y+186\right)
Divide both sides by 8.
x=-\frac{5}{8}y+\frac{93}{4}
Multiply \frac{1}{8} times -5y+186.
4\left(-\frac{5}{8}y+\frac{93}{4}\right)+7y=174
Substitute -\frac{5y}{8}+\frac{93}{4} for x in the other equation, 4x+7y=174.
-\frac{5}{2}y+93+7y=174
Multiply 4 times -\frac{5y}{8}+\frac{93}{4}.
\frac{9}{2}y+93=174
Add -\frac{5y}{2} to 7y.
\frac{9}{2}y=81
Subtract 93 from both sides of the equation.
y=18
Divide both sides of the equation by \frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{8}\times 18+\frac{93}{4}
Substitute 18 for y in x=-\frac{5}{8}y+\frac{93}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-45+93}{4}
Multiply -\frac{5}{8} times 18.
x=12
Add \frac{93}{4} to -\frac{45}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=12,y=18
The system is now solved.
8x+5y=186,4x+7y=174
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&5\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}186\\174\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&5\\4&7\end{matrix}\right))\left(\begin{matrix}8&5\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&5\\4&7\end{matrix}\right))\left(\begin{matrix}186\\174\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&5\\4&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&5\\4&7\end{matrix}\right))\left(\begin{matrix}186\\174\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&5\\4&7\end{matrix}\right))\left(\begin{matrix}186\\174\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8\times 7-5\times 4}&-\frac{5}{8\times 7-5\times 4}\\-\frac{4}{8\times 7-5\times 4}&\frac{8}{8\times 7-5\times 4}\end{matrix}\right)\left(\begin{matrix}186\\174\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{36}&-\frac{5}{36}\\-\frac{1}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}186\\174\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{36}\times 186-\frac{5}{36}\times 174\\-\frac{1}{9}\times 186+\frac{2}{9}\times 174\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
Do the arithmetic.
x=12,y=18
Extract the matrix elements x and y.
8x+5y=186,4x+7y=174
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 8x+4\times 5y=4\times 186,8\times 4x+8\times 7y=8\times 174
To make 8x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 8.
32x+20y=744,32x+56y=1392
Simplify.
32x-32x+20y-56y=744-1392
Subtract 32x+56y=1392 from 32x+20y=744 by subtracting like terms on each side of the equal sign.
20y-56y=744-1392
Add 32x to -32x. Terms 32x and -32x cancel out, leaving an equation with only one variable that can be solved.
-36y=744-1392
Add 20y to -56y.
-36y=-648
Add 744 to -1392.
y=18
Divide both sides by -36.
4x+7\times 18=174
Substitute 18 for y in 4x+7y=174. Because the resulting equation contains only one variable, you can solve for x directly.
4x+126=174
Multiply 7 times 18.
4x=48
Subtract 126 from both sides of the equation.
x=12
Divide both sides by 4.
x=12,y=18
The system is now solved.