\left\{ \begin{array} { l } { 8 x + 4 y + z = 1 } \\ { 92 + 3 y = 8 } \\ { 3 x + y y + z = 0 } \end{array} \right.
Solve for x, y, z
x = \frac{897}{5} = 179\frac{2}{5} = 179.4
y=-28
z = -\frac{6611}{5} = -1322\frac{1}{5} = -1322.2
Share
Copied to clipboard
z=-8x-4y+1
Solve 8x+4y+z=1 for z.
3x+yy-8x-4y+1=0
Substitute -8x-4y+1 for z in the equation 3x+yy+z=0.
y=-28 x=\frac{1}{5}y^{2}-\frac{4}{5}y+\frac{1}{5}
Solve the second equation for y and the third equation for x.
x=\frac{1}{5}\left(-28\right)^{2}-\frac{4}{5}\left(-28\right)+\frac{1}{5}
Substitute -28 for y in the equation x=\frac{1}{5}y^{2}-\frac{4}{5}y+\frac{1}{5}.
x=\frac{897}{5}
Calculate x from x=\frac{1}{5}\left(-28\right)^{2}-\frac{4}{5}\left(-28\right)+\frac{1}{5}.
z=-8\times \frac{897}{5}-4\left(-28\right)+1
Substitute -28 for y and \frac{897}{5} for x in the equation z=-8x-4y+1.
z=-\frac{6611}{5}
Calculate z from z=-8\times \frac{897}{5}-4\left(-28\right)+1.
x=\frac{897}{5} y=-28 z=-\frac{6611}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}