Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x+18y=1000,64x+126y=7280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+18y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-18y+1000
Subtract 18y from both sides of the equation.
x=\frac{1}{8}\left(-18y+1000\right)
Divide both sides by 8.
x=-\frac{9}{4}y+125
Multiply \frac{1}{8} times -18y+1000.
64\left(-\frac{9}{4}y+125\right)+126y=7280
Substitute -\frac{9y}{4}+125 for x in the other equation, 64x+126y=7280.
-144y+8000+126y=7280
Multiply 64 times -\frac{9y}{4}+125.
-18y+8000=7280
Add -144y to 126y.
-18y=-720
Subtract 8000 from both sides of the equation.
y=40
Divide both sides by -18.
x=-\frac{9}{4}\times 40+125
Substitute 40 for y in x=-\frac{9}{4}y+125. Because the resulting equation contains only one variable, you can solve for x directly.
x=-90+125
Multiply -\frac{9}{4} times 40.
x=35
Add 125 to -90.
x=35,y=40
The system is now solved.
8x+18y=1000,64x+126y=7280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&18\\64&126\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\7280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&18\\64&126\end{matrix}\right))\left(\begin{matrix}8&18\\64&126\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&18\\64&126\end{matrix}\right))\left(\begin{matrix}1000\\7280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&18\\64&126\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&18\\64&126\end{matrix}\right))\left(\begin{matrix}1000\\7280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&18\\64&126\end{matrix}\right))\left(\begin{matrix}1000\\7280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{126}{8\times 126-18\times 64}&-\frac{18}{8\times 126-18\times 64}\\-\frac{64}{8\times 126-18\times 64}&\frac{8}{8\times 126-18\times 64}\end{matrix}\right)\left(\begin{matrix}1000\\7280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{8}&\frac{1}{8}\\\frac{4}{9}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}1000\\7280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{8}\times 1000+\frac{1}{8}\times 7280\\\frac{4}{9}\times 1000-\frac{1}{18}\times 7280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\40\end{matrix}\right)
Do the arithmetic.
x=35,y=40
Extract the matrix elements x and y.
8x+18y=1000,64x+126y=7280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
64\times 8x+64\times 18y=64\times 1000,8\times 64x+8\times 126y=8\times 7280
To make 8x and 64x equal, multiply all terms on each side of the first equation by 64 and all terms on each side of the second by 8.
512x+1152y=64000,512x+1008y=58240
Simplify.
512x-512x+1152y-1008y=64000-58240
Subtract 512x+1008y=58240 from 512x+1152y=64000 by subtracting like terms on each side of the equal sign.
1152y-1008y=64000-58240
Add 512x to -512x. Terms 512x and -512x cancel out, leaving an equation with only one variable that can be solved.
144y=64000-58240
Add 1152y to -1008y.
144y=5760
Add 64000 to -58240.
y=40
Divide both sides by 144.
64x+126\times 40=7280
Substitute 40 for y in 64x+126y=7280. Because the resulting equation contains only one variable, you can solve for x directly.
64x+5040=7280
Multiply 126 times 40.
64x=2240
Subtract 5040 from both sides of the equation.
x=35
Divide both sides by 64.
x=35,y=40
The system is now solved.