\left\{ \begin{array} { l } { 8 x + 15 y = 160 } \\ { 6 x = - 10 + 5 } \end{array} \right.
Solve for x, y
x=-\frac{5}{6}\approx -0.833333333
y = \frac{100}{9} = 11\frac{1}{9} \approx 11.111111111
Graph
Share
Copied to clipboard
6x=-5
Consider the second equation. Add -10 and 5 to get -5.
x=-\frac{5}{6}
Divide both sides by 6.
8\left(-\frac{5}{6}\right)+15y=160
Consider the first equation. Insert the known values of variables into the equation.
-\frac{20}{3}+15y=160
Multiply 8 and -\frac{5}{6} to get -\frac{20}{3}.
15y=160+\frac{20}{3}
Add \frac{20}{3} to both sides.
15y=\frac{500}{3}
Add 160 and \frac{20}{3} to get \frac{500}{3}.
y=\frac{\frac{500}{3}}{15}
Divide both sides by 15.
y=\frac{500}{3\times 15}
Express \frac{\frac{500}{3}}{15} as a single fraction.
y=\frac{500}{45}
Multiply 3 and 15 to get 45.
y=\frac{100}{9}
Reduce the fraction \frac{500}{45} to lowest terms by extracting and canceling out 5.
x=-\frac{5}{6} y=\frac{100}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}