\left\{ \begin{array} { l } { 8 = 11 ( x - y ) } \\ { 32 = 11 ( x ^ { 2 } + y ^ { 2 } ) } \end{array} \right.
Solve for x, y
x=\frac{4-4\sqrt{10}}{11}\approx -0.786282786\text{, }y=\frac{-4\sqrt{10}-4}{11}\approx -1.513555513
x=\frac{4\sqrt{10}+4}{11}\approx 1.513555513\text{, }y=\frac{4\sqrt{10}-4}{11}\approx 0.786282786
Graph
Share
Copied to clipboard
\frac{8}{11}=x-y
Consider the first equation. Divide both sides by 11.
x-y=\frac{8}{11}
Swap sides so that all variable terms are on the left hand side.
\frac{32}{11}=x^{2}+y^{2}
Consider the second equation. Divide both sides by 11.
x^{2}+y^{2}=\frac{32}{11}
Swap sides so that all variable terms are on the left hand side.
x-y=\frac{8}{11},y^{2}+x^{2}=\frac{32}{11}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=\frac{8}{11}
Solve x-y=\frac{8}{11} for x by isolating x on the left hand side of the equal sign.
x=y+\frac{8}{11}
Subtract -y from both sides of the equation.
y^{2}+\left(y+\frac{8}{11}\right)^{2}=\frac{32}{11}
Substitute y+\frac{8}{11} for x in the other equation, y^{2}+x^{2}=\frac{32}{11}.
y^{2}+y^{2}+\frac{16}{11}y+\frac{64}{121}=\frac{32}{11}
Square y+\frac{8}{11}.
2y^{2}+\frac{16}{11}y+\frac{64}{121}=\frac{32}{11}
Add y^{2} to y^{2}.
2y^{2}+\frac{16}{11}y-\frac{288}{121}=0
Subtract \frac{32}{11} from both sides of the equation.
y=\frac{-\frac{16}{11}±\sqrt{\left(\frac{16}{11}\right)^{2}-4\times 2\left(-\frac{288}{121}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times \frac{8}{11}\times 1\times 2 for b, and -\frac{288}{121} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{16}{11}±\sqrt{\frac{256}{121}-4\times 2\left(-\frac{288}{121}\right)}}{2\times 2}
Square 1\times \frac{8}{11}\times 1\times 2.
y=\frac{-\frac{16}{11}±\sqrt{\frac{256}{121}-8\left(-\frac{288}{121}\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-\frac{16}{11}±\sqrt{\frac{256+2304}{121}}}{2\times 2}
Multiply -8 times -\frac{288}{121}.
y=\frac{-\frac{16}{11}±\sqrt{\frac{2560}{121}}}{2\times 2}
Add \frac{256}{121} to \frac{2304}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{16}{11}±\frac{16\sqrt{10}}{11}}{2\times 2}
Take the square root of \frac{2560}{121}.
y=\frac{-\frac{16}{11}±\frac{16\sqrt{10}}{11}}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{16\sqrt{10}-16}{4\times 11}
Now solve the equation y=\frac{-\frac{16}{11}±\frac{16\sqrt{10}}{11}}{4} when ± is plus. Add -\frac{16}{11} to \frac{16\sqrt{10}}{11}.
y=\frac{4\sqrt{10}-4}{11}
Divide \frac{-16+16\sqrt{10}}{11} by 4.
y=\frac{-16\sqrt{10}-16}{4\times 11}
Now solve the equation y=\frac{-\frac{16}{11}±\frac{16\sqrt{10}}{11}}{4} when ± is minus. Subtract \frac{16\sqrt{10}}{11} from -\frac{16}{11}.
y=\frac{-4\sqrt{10}-4}{11}
Divide \frac{-16-16\sqrt{10}}{11} by 4.
x=\frac{4\sqrt{10}-4+8}{11}
There are two solutions for y: \frac{-4+4\sqrt{10}}{11} and \frac{-4-4\sqrt{10}}{11}. Substitute \frac{-4+4\sqrt{10}}{11} for y in the equation x=y+\frac{8}{11} to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\sqrt{10}-4+8}{11}
Now substitute \frac{-4-4\sqrt{10}}{11} for y in the equation x=y+\frac{8}{11} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{4\sqrt{10}-4+8}{11},y=\frac{4\sqrt{10}-4}{11}\text{ or }x=\frac{-4\sqrt{10}-4+8}{11},y=\frac{-4\sqrt{10}-4}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}