\left\{ \begin{array} { l } { 7 x + 4 y = 510 } \\ { 3 x + 5 y = 460 } \end{array} \right.
Solve for x, y
x = \frac{710}{23} = 30\frac{20}{23} \approx 30.869565217
y = \frac{1690}{23} = 73\frac{11}{23} \approx 73.47826087
Graph
Share
Copied to clipboard
7x+4y=510,3x+5y=460
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x+4y=510
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=-4y+510
Subtract 4y from both sides of the equation.
x=\frac{1}{7}\left(-4y+510\right)
Divide both sides by 7.
x=-\frac{4}{7}y+\frac{510}{7}
Multiply \frac{1}{7} times -4y+510.
3\left(-\frac{4}{7}y+\frac{510}{7}\right)+5y=460
Substitute \frac{-4y+510}{7} for x in the other equation, 3x+5y=460.
-\frac{12}{7}y+\frac{1530}{7}+5y=460
Multiply 3 times \frac{-4y+510}{7}.
\frac{23}{7}y+\frac{1530}{7}=460
Add -\frac{12y}{7} to 5y.
\frac{23}{7}y=\frac{1690}{7}
Subtract \frac{1530}{7} from both sides of the equation.
y=\frac{1690}{23}
Divide both sides of the equation by \frac{23}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{7}\times \frac{1690}{23}+\frac{510}{7}
Substitute \frac{1690}{23} for y in x=-\frac{4}{7}y+\frac{510}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{6760}{161}+\frac{510}{7}
Multiply -\frac{4}{7} times \frac{1690}{23} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{710}{23}
Add \frac{510}{7} to -\frac{6760}{161} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{710}{23},y=\frac{1690}{23}
The system is now solved.
7x+4y=510,3x+5y=460
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&4\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}510\\460\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&4\\3&5\end{matrix}\right))\left(\begin{matrix}7&4\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\3&5\end{matrix}\right))\left(\begin{matrix}510\\460\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&4\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\3&5\end{matrix}\right))\left(\begin{matrix}510\\460\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\3&5\end{matrix}\right))\left(\begin{matrix}510\\460\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7\times 5-4\times 3}&-\frac{4}{7\times 5-4\times 3}\\-\frac{3}{7\times 5-4\times 3}&\frac{7}{7\times 5-4\times 3}\end{matrix}\right)\left(\begin{matrix}510\\460\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&-\frac{4}{23}\\-\frac{3}{23}&\frac{7}{23}\end{matrix}\right)\left(\begin{matrix}510\\460\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\times 510-\frac{4}{23}\times 460\\-\frac{3}{23}\times 510+\frac{7}{23}\times 460\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{710}{23}\\\frac{1690}{23}\end{matrix}\right)
Do the arithmetic.
x=\frac{710}{23},y=\frac{1690}{23}
Extract the matrix elements x and y.
7x+4y=510,3x+5y=460
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 7x+3\times 4y=3\times 510,7\times 3x+7\times 5y=7\times 460
To make 7x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 7.
21x+12y=1530,21x+35y=3220
Simplify.
21x-21x+12y-35y=1530-3220
Subtract 21x+35y=3220 from 21x+12y=1530 by subtracting like terms on each side of the equal sign.
12y-35y=1530-3220
Add 21x to -21x. Terms 21x and -21x cancel out, leaving an equation with only one variable that can be solved.
-23y=1530-3220
Add 12y to -35y.
-23y=-1690
Add 1530 to -3220.
y=\frac{1690}{23}
Divide both sides by -23.
3x+5\times \frac{1690}{23}=460
Substitute \frac{1690}{23} for y in 3x+5y=460. Because the resulting equation contains only one variable, you can solve for x directly.
3x+\frac{8450}{23}=460
Multiply 5 times \frac{1690}{23}.
3x=\frac{2130}{23}
Subtract \frac{8450}{23} from both sides of the equation.
x=\frac{710}{23}
Divide both sides by 3.
x=\frac{710}{23},y=\frac{1690}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}