\left\{ \begin{array} { l } { 7 x + 109 = 3 } \\ { 2 x - 5 y = 7 } \end{array} \right.
Solve for x, y
x = -\frac{106}{7} = -15\frac{1}{7} \approx -15.142857143
y = -\frac{261}{35} = -7\frac{16}{35} \approx -7.457142857
Graph
Share
Copied to clipboard
7x=3-109
Consider the first equation. Subtract 109 from both sides.
7x=-106
Subtract 109 from 3 to get -106.
x=-\frac{106}{7}
Divide both sides by 7.
2\left(-\frac{106}{7}\right)-5y=7
Consider the second equation. Insert the known values of variables into the equation.
-\frac{212}{7}-5y=7
Multiply 2 and -\frac{106}{7} to get -\frac{212}{7}.
-5y=7+\frac{212}{7}
Add \frac{212}{7} to both sides.
-5y=\frac{261}{7}
Add 7 and \frac{212}{7} to get \frac{261}{7}.
y=\frac{\frac{261}{7}}{-5}
Divide both sides by -5.
y=\frac{261}{7\left(-5\right)}
Express \frac{\frac{261}{7}}{-5} as a single fraction.
y=\frac{261}{-35}
Multiply 7 and -5 to get -35.
y=-\frac{261}{35}
Fraction \frac{261}{-35} can be rewritten as -\frac{261}{35} by extracting the negative sign.
x=-\frac{106}{7} y=-\frac{261}{35}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}